toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mason, I.C.; Boubekri, M.; Figueiro, M.G.; Hasler, B.P.; Hattar, S.; Hill, S.M.; Nelson, R.J.; Sharkey, K.M.; Wright, K.P.; Boyd, W.A.; Brown, M.K.; Laposky, A.D.; Twery, M.J.; Zee, P.C. url  doi
openurl 
  Title Circadian Health and Light: A Report on the National Heart, Lung, and Blood Institute's Workshop Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 33 Issue 5 Pages 451-457  
  Keywords Human Health  
  Abstract Despite the omnipresence of artificial and natural light exposure, there exists little guidance in the United States and elsewhere on light exposure in terms of timing, intensity, spectrum, and other light characteristics known to affect human health, performance, and well-being; in parallel, there is little information regarding the quantity and characteristics of light exposure that people receive. To address this, the National Center on Sleep Disorders Research, in the Division of Lung Diseases, National Heart, Lung, and Blood Institute, held a workshop in August 2016 on circadian health and light. Workshop participants discussed scientific research advances on the effects of light on human physiology, identified remaining knowledge gaps in these research areas, and articulated opportunities to use appropriate lighting to protect and improve circadian-dependent health. Based on this workshop, participants put forth the following strategic intent, objectives, and strategies to guide discovery, measurement, education, and implementation of the appropriate use of light to achieve, promote, and maintain circadian health in modern society.  
  Address Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30033850 Approved no  
  Call Number GFZ @ kyba @ Serial 1975  
Permanent link to this record
 

 
Author El-Bakry, H.A.; Ismail, I.A.; Soliman, S.S. url  doi
openurl 
  Title Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways Type Journal Article
  Year 2018 Publication Journal of Photochemistry and Photobiology. B, Biology Abbreviated Journal J Photochem Photobiol B  
  Volume 186 Issue Pages 69-80  
  Keywords Animals  
  Abstract The awareness of the interrelationship between immunosenescence and constant light exposure can provide new insights into the consequences of excessive exposure to light at night due to light pollution or shift work. Here, we investigated whether constant light exposure (LL) acts as an inducer of immunosenescence. We also determined the role of melatonin or turmeric in reversing the putative effects of constant light and explored for the first time the underlying molecular mechanisms. Young (3-4-month-old) rats were exposed daily to LL alone or in combination with each of melatonin and turmeric for 12weeks. A group of aged rats (18-months old; n=6) was used as a reference for natural immunosenescence. Constant light exposure resulted in remarkable pathophysiological alterations resembling those noticed in normal aged rats, manifested as apparent decreases in antioxidant activities as well as Nrf2 and DJ-1 expressions, striking augmentation in oxidative stress, proinflammatory cytokines and expression of TNFalpha, Bax, and p53 genes, and deleterious changes of lymphoid organs, Co-administration of melatonin or turmeric was able to reverse all alterations induced by LL through upregulation of Nrf2/DJ-1 and downregulation of p53/Bax pathways. These data suggest that LL accelerates immunosenescence via oxidative stress and apoptotic pathways. They also demonstrate for the first time that turmeric is comparable to melatonin in boosting the immune function and counteracting the LL-associated immunosenescence. These effects suggest that turmeric supplementation can be used as an inexpensive intervention to prevent circadian disruption-related immunosenescence. However, to validate the effects of turmeric on humans further studies are warranted.  
  Address Department of Zoology & Entomology, Faculty of Science, Minia University, Egypt  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-1344 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30015062 Approved no  
  Call Number GFZ @ kyba @ Serial 1984  
Permanent link to this record
 

 
Author Lu, Y.; Coops, N.C. url  doi
openurl 
  Title Bright lights, big city: Causal effects of population and GDP on urban brightness Type Journal Article
  Year 2018 Publication PloS one Abbreviated Journal PLoS One  
  Volume 13 Issue 7 Pages e0199545  
  Keywords Remote Sensing  
  Abstract Cities are arguably both the cause, and answer, to societies' current sustainability issues. Urbanization is the interplay between a city's physical growth and its socio-economic development, both of which consume a substantial amount of energy and resources. Knowledge of the underlying driver(s) of urban expansion facilitates not only academic research but, more importantly, bridges the gap between science, policy drafting, and practical urban management. An increasing number of researchers are recognizing the benefits of innovative remotely sensed datasets, such as nighttime lights data (NTL), as a proxy to map urbanization and subsequently examine the driving socio-economic variables in cities. We further these approaches, by taking a trans-pacific view, and examine how an array of socio-economic ind0icators of 25 culturally and economically important urban hubs relate to long term patterns in NTL for the past 21 years. We undertake a classic econometric approach-panel causality tests which allow analysis of the causal relationships between NTL and socio-economic development across the region. The panel causality test results show a contrasting effect of population and gross domestic product (GDP) on NTL in fast, and slowly, changing cities. Information derived from this study quantitatively chronicles urban activities in the pan-Pacific region and potentially offers data for studies that spatially track local progress of sustainable urban development goals.  
  Address Integrated Remote Sensing Studio, Forest Recourses Management, University of British Columbia, Vancouver, BC, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:29995923 Approved no  
  Call Number GFZ @ kyba @ Serial 1963  
Permanent link to this record
 

 
Author Souman, J.L.; Borra, T.; de Goijer, I.; Schlangen, L.J.M.; Vlaskamp, B.N.S.; Lucassen, M.P. url  doi
openurl 
  Title Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 33 Issue 4 Pages 420-431  
  Keywords Human Health; Lighting  
  Abstract Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.  
  Address Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:29984614 Approved no  
  Call Number GFZ @ kyba @ Serial 1985  
Permanent link to this record
 

 
Author Wittenbrink, N.; Ananthasubramaniam, B.; Munch, M.; Koller, B.; Maier, B.; Weschke, C.; Bes, F.; de Zeeuw, J.; Nowozin, C.; Wahnschaffe, A.; Wisniewski, S.; Zaleska, M.; Bartok, O.; Ashwal-Fluss, R.; Lammert, H.; Herzel, H.; Hummel, M.; Kadener, S.; Kunz, D.; Kramer, A. url  doi
openurl 
  Title High-accuracy determination of internal circadian time from a single blood sample Type Journal Article
  Year 2018 Publication The Journal of Clinical Investigation Abbreviated Journal J Clin Invest  
  Volume 128 Issue 9 Pages 3826-3839  
  Keywords Human Health  
  Abstract BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium fur Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.  
  Address Charite Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9738 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:29953415; PMCID:PMC6118629 Approved no  
  Call Number GFZ @ kyba @ Serial 2194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: