|   | 
Details
   web
Records
Author Masri, S.; Sassone-Corsi, P.
Title The emerging link between cancer, metabolism, and circadian rhythms Type Journal Article
Year 2018 Publication Nature Medicine Abbreviated Journal Nat Med
Volume 24 Issue 12 Pages 1795-1803
Keywords Review; Human Health
Abstract The circadian clock is a complex cellular mechanism that, through the control of diverse metabolic and gene expression pathways, governs a large array of cyclic physiological processes. Epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer that is supported by recent preclinical data. In addition, results from animal models and molecular studies underscore emerging links between cancer metabolism and the circadian clock. This has implications for therapeutic approaches, and we discuss the possible design of chronopharmacological strategies.
Address Department of Biological Chemistry, Center for Epigenetics and Metabolism, INSERM U1233, University of California Irvine, Irvine, CA, USA. psc@uci.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1078-8956 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30523327 Approved no
Call Number GFZ @ kyba @ Serial 2135
Permanent link to this record
 

 
Author Owens, A.C.S.; Lewis, S.M.
Title The impact of artificial light at night on nocturnal insects: A review and synthesis Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 22 Pages 11337-11358
Keywords Review; Animals
Abstract In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.
Address Department of Biology Tufts University Medford Massachusetts
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30519447; PMCID:PMC6262936 Approved no
Call Number GFZ @ kyba @ Serial 2132
Permanent link to this record
 

 
Author Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D.
Title On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite Type Journal Article
Year 2018 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 18 Issue 12 Pages
Keywords Instrumentation; Remote Sensing
Abstract The LuoJia1-01 satellite can acquire high-resolution, high-sensitivity nighttime light data for night remote sensing applications. LuoJia1-01 is equipped with a 4-megapixel CMOS sensor composed of 2048 x 2048 unique detectors that record weak nighttime light on Earth. Owing to minute variations in manufacturing and temporal degradation, each detector's behavior varies when exposed to uniform radiance, resulting in noticeable detector-level errors in the acquired imagery. Radiometric calibration helps to eliminate these detector-level errors. For the nighttime sensor of LuoJia1-01, it is difficult to directly use the nighttime light data to calibrate the detector-level errors, because at night there is no large-area uniform light source. This paper reports an on-orbit radiometric calibration method that uses daytime data to estimate the relative calibration coefficients for each detector in the LuoJia1-01 nighttime sensor, and uses the calibrated data to correct nighttime data. The image sensor has a high dynamic range (HDR) mode, which is optimized for day/night imaging applications. An HDR image can be constructed using low- and high-gain HDR images captured in HDR mode. Hence, a day-to-night radiometric reference transfer model, which uses daytime uniform calibration to calibrate the detector non-uniformity of the nighttime sensor, is herein built for LuoJia1-01. Owing to the lack of calibration equipment on-board LuoJia1-01, the dark current of the nighttime sensor is calibrated by collecting no-light desert images at new moon. The results show that in HDR mode (1) the root mean square of mean for each detector in low-gain (high-gain) images is better than 0.04 (0.07) in digital number (DN) after dark current correction; (2) the DN relationship between low- and high-gain images conforms to the quadratic polynomial mode; (3) streaking metrics are better than 0.2% after relative calibration; and (4) the nighttime sensor has the same relative correction parameters at different exposure times for the same gain parameters.
Address State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China. drli@whu.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30513817 Approved no
Call Number GFZ @ kyba @ Serial 2125
Permanent link to this record
 

 
Author Zerbini, G.; Kantermann, T.; Merrow, M.
Title Strategies to decrease social jetlag: Reducing evening blue light advances sleep and melatonin Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages
Keywords Human Health
Abstract The timing of sleep is under the control of the circadian clock, which uses light to entrain to the external light-dark cycle. A combination of genetic, physiological and environmental factors produces individual differences in chronotype (entrained phase as manifest in sleep timing). A mismatch between circadian and societal (e.g., work) clocks leads to a condition called social jetlag, which is characterized by changing sleep times over work and free days and accumulation of sleep debt. Social jetlag, which is prevalent in late chronotypes, has been related to several health issues. One way to reduce social jetlag would be to advance the circadian clock via modifications of the light environment. We thus performed two intervention field studies to describe methods for decreasing social jetlag. One study decreased evening light exposure (via blue-light-blocking glasses) and the other used increased morning light (via the use of curtains). We measured behaviour as well as melatonin; the latter in order to validate that behaviour was consistent with this neuroendocrinological phase marker of the circadian clock. We found that a decrease in evening blue light exposure led to an advance in melatonin and sleep onset on workdays. Increased morning light exposure advanced neither melatonin secretion nor sleep timing. Neither protocol led to a significant change in social jetlag. Despite this, our findings show that controlling light exposure at home can be effective in advancing melatonin secretion and sleep, thereby helping late chronotypes to better cope with early social schedules.
Address Institute of Medical Psychology, LMU Munich, Munich, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes (down) PMID:30506899 Approved no
Call Number GFZ @ kyba @ Serial 2138
Permanent link to this record
 

 
Author Tarquini, R.; Carbone, A.; Martinez, M.; Mazzoccoli, G.
Title Daylight saving time and circadian rhythms in the neuro-endocrine-immune system: impact on cardiovascular health Type Journal Article
Year 2018 Publication Internal and Emergency Medicine Abbreviated Journal Intern Emerg Med
Volume in press Issue Pages
Keywords Human Health
Abstract
Address Division of Internal Medicine and Laboratory of Chronobiology, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo Della Sofferenza”, Cappuccini Avenue, San Giovanni Rotondo, Foggia, 71013, Italy. g.mazzoccoli@operapadrepio.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1828-0447 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30488154 Approved no
Call Number GFZ @ kyba @ Serial 2121
Permanent link to this record