toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cravens, Z.M.; Boyles, J.G. url  doi
openurl 
  Title Illuminating the physiological implications of artificial light on an insectivorous bat community Type Journal Article
  Year 2018 Publication Oecologia Abbreviated Journal Oecologia  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Global light pollution threatens to disturb numerous wildlife species, but impacts of artificial light will likely vary among species within a community. Thus, artificial lights may change the environment in such a way as to create winners and losers as some species benefit while others do not. Insectivorous bats are nocturnal and a good model to test for differential effects of light pollution on a single community. We used a physiological technique to address this community-level question by measuring plasma ss-hydroxybutyrate (a blood metabolite) concentrations from six species of insectivorous bats in lit and unlit conditions. We also recorded bat calls acoustically to measure activity levels between experimental conditions. Blood metabolite level and acoustic activity data suggest species-specific changes in foraging around lights. In red bats (Lasiurus borealis), ss-hydroxybutyrate levels at lit sites were highest early in the night before decreasing. Acoustic data indicate pronounced peaks in activity at lit sites early in the night. In red bats on dark nights and in the other species in this community, which seem to avoid lights, ss-hydroxybutyrate remained relatively constant. Our results suggest red bats are more willing to expend energy to actively forage around lights despite potential negative impacts, while other, generally rarer species avoid lit areas. Artificial light appears to have a bifurcating effect on bat communities, whereby some species take advantage of concentrated prey resources, yet most do not. Further, this may concentrate light-intolerant species into limited dark refugia, thereby increasing competition for depauperate, phototactic insect communities.  
  Address Cooperative Wildlife Research Laboratory, Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30446844 Approved no  
  Call Number GFZ @ kyba @ Serial 2061  
Permanent link to this record
 

 
Author Gaston, K.J. url  doi
openurl 
  Title Lighting up the nighttime Type Journal Article
  Year 2018 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 362 Issue 6416 Pages 744-746  
  Keywords Commentary  
  Abstract Among the most visually compelling images of the whole Earth have been those created using data obtained at night by astronauts or from satellites. The proliferation in use of electric lighting—including from industrial, commercial, municipal, and domestic sources—is striking. It sketches the spatial distribution of much of the human population, outlining a substantial proportion of the world's coastline, highlighting a multitude of towns and cities, and drawing the major highways that connect them. The data embodied in these nighttime images have been used to estimate and map levels of energy use, urbanization, and economic activity. They have also been key in focusing attention on the environmental impacts of the artificial light at night itself. Explicit steps need to be taken to limit these impacts, which vary according to the intensity, spectrum, spatial extent, and temporal dynamics of this lighting.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK. k.j.gaston@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30442788 Approved no  
  Call Number GFZ @ kyba @ Serial 2058  
Permanent link to this record
 

 
Author Griepentrog, J.E.; Labiner, H.E.; Gunn, S.R.; Rosengart, M.R. url  doi
openurl 
  Title Bright environmental light improves the sleepiness of nightshift ICU nurses Type Journal Article
  Year 2018 Publication Critical Care (London, England) Abbreviated Journal Crit Care  
  Volume 22 Issue 1 Pages 295  
  Keywords Circadian; Light; Night shift; Nurse; Shift work sleep disorder  
  Abstract BACKGROUND: Shift work can disturb circadian homeostasis and result in fatigue, excessive sleepiness, and reduced quality of life. Light therapy has been shown to impart positive effects in night shift workers. We sought to determine whether or not prolonged exposure to bright light during a night shift reduces sleepiness and enhances psychomotor performance among ICU nurses.

METHODS: This is a single-center randomized, crossover clinical trial at a surgical trauma ICU. ICU nurses working a night shift were exposed to a 10-h period of high illuminance (1500-2000 lx) white light compared to standard ambient fluorescent lighting of the hospital. They then completed the Stanford Sleepiness Scale and the Psychomotor Vigilance Test. The primary and secondary endpoints were analyzed using the paired t test. A p value <0.05 was considered significant.

RESULTS: A total of 43 matched pairs completed both lighting exposures and were analyzed. When exposed to high illuminance lighting subjects experienced reduced sleepiness scores on the Stanford Sleepiness Scale than when exposed to standard hospital lighting: mean (sem) 2.6 (0.2) vs. 3.0 (0.2), p = 0.03. However, they committed more psychomotor errors: 2.3 (0.2) vs. 1.7 (0.2), p = 0.03.

CONCLUSIONS: A bright lighting environment for ICU nurses working the night shift reduces sleepiness but increases the number of psychomotor errors.

TRIAL REGISTRATION: ClinicalTrials.gov, NCT03331822 . Retrospectively registered on 6 November 2017.
 
  Address Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA. rosengartmr@upmc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8535 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30424793 Approved no  
  Call Number GFZ @ kyba @ Serial 2070  
Permanent link to this record
 

 
Author Shima, J.S.; Swearer, S.E. url  doi
openurl 
  Title Moonlight enhances growth in larval fish Type Journal Article
  Year 2018 Publication Ecology Abbreviated Journal Ecology  
  Volume in press Issue Pages  
  Keywords Animals; Moonlight  
  Abstract Moonlight mediates trophic interactions and shapes the evolution of life-history strategies for nocturnal organisms. Reproductive cycles and important life-history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using 'master chronologies' of larval growth constructed from age-independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories. This article is protected by copyright. All rights reserved.  
  Address School of BioSciences, University of Melbourne, Melbourne, 3010, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30422325 Approved no  
  Call Number GFZ @ kyba @ Serial 2059  
Permanent link to this record
 

 
Author Bharti, N.; Tatem, A.J. url  doi
openurl 
  Title Fluctuations in anthropogenic nighttime lights from satellite imagery for five cities in Niger and Nigeria Type Journal Article
  Year 2018 Publication Scientific Data Abbreviated Journal Sci Data  
  Volume 5 Issue Pages 180256  
  Keywords Remote Sensing  
  Abstract Dynamic measures of human populations are critical for global health management but are often overlooked, largely because they are difficult to quantify. Measuring human population dynamics can be prohibitively expensive in under-resourced communities. Satellite imagery can provide measurements of human populations, past and present, to complement public health analyses and interventions. We used anthropogenic illumination from publicly accessible, serial satellite nighttime images as a quantifiable proxy for seasonal population variation in five urban areas in Niger and Nigeria. We identified population fluxes as the mechanistic driver of regional seasonal measles outbreaks. Our data showed 1) urban illumination fluctuated seasonally, 2) corresponding population fluctuations were sufficient to drive seasonal measles outbreaks, and 3) overlooking these fluctuations during vaccination activities resulted in below-target coverage levels, incapable of halting transmission of the virus. We designed immunization solutions capable of achieving above-target coverage of both resident and mobile populations. Here, we provide detailed data on brightness from 2000-2005 for 5 cities in Niger and Nigeria and detailed methodology for application to other populations.  
  Address WorldPop, Department of Geography and Environment, University of Southampton; Flowminder Foundation, Southampton, SO17 1BJ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4463 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:30422123; PMCID:PMC6233255 Approved no  
  Call Number GFZ @ kyba @ Serial 2769  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: