|   | 
Details
   web
Records
Author Watson, L.A.; Phillips, A.J.K.; Hosken, I.T.; McGlashan, E.M.; Anderson, C.; Lack, L.C.; Lockley, S.W.; Rajaratnam, S.M.W.; Cain, S.W.
Title Increased sensitivity of the circadian system to light in delayed sleep-wake phase disorder Type Journal Article
Year 2018 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume in press Issue Pages
Keywords Human Health
Abstract KEY POINTS: This is the first study to demonstrate an altered circadian phase shifting response in a circadian rhythm sleep disorder. Patients with Delayed Sleep-Wake Phase Disorder (DSWPD) demonstrate greater sensitivity of the circadian system to the phase delaying effects of light. Increased circadian sensitivity to light is associated with later circadian timing within both control and DSWPD groups. DSWPD patients had a greater sustained pupil response after light exposure. Treatments for DSWPD should consider sensitivity of the circadian system to light as a potential underlying vulnerability, making patients susceptible to relapse. ABSTRACT: Patients with Delayed Sleep-Wake Phase Disorder (DSWPD) exhibit delayed sleep-wake behavior relative to desired bedtime, often leading to chronic sleep restriction and daytime dysfunction. The majority of DSWPD patients also display delayed circadian timing in the melatonin rhythm. Hypersensitivity of the circadian system to phase delaying light is a plausible physiological basis for DSWPD vulnerability. We compared the phase shifting response to a 6.5-h light exposure ( approximately 150 lux) between male patients with diagnosed DSWPD (n = 10; aged 22.4 +/- 3.3 years) and male healthy controls (n = 11; aged 22.4 +/- 2.4 years). Salivary dim light melatonin onset (DLMO) was measured under controlled conditions in dim light (<3 lux) before and after light exposure. Correcting for the circadian time of the light exposure, DSWPD patients exhibited 31.5% greater phase delay shifts than healthy controls. In both groups, a later initial phase of the melatonin rhythm was associated with greater magnitude of phase shifts, indicating that increased circadian sensitivity to light may be a factor that contributes to delayed phase, even in non-clinical groups. DSWPD patients also had reduced pupil size following the light exposure, and showed a trend towards increased melatonin suppression during light exposure. These findings indicate that, for patients with DSWPD, assessment of light sensitivity may be an important factor that can inform behavioral therapy, including minimization of exposure to phase-delaying night-time light. This article is protected by copyright. All rights reserved.
Address Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30281150 Approved no
Call Number GFZ @ kyba @ Serial 2026
Permanent link to this record
 

 
Author Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F.
Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 17 Pages 8761-8769
Keywords Animals; Ecology
Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30271543; PMCID:PMC6157684 Approved no
Call Number NC @ ehyde3 @ Serial 2100
Permanent link to this record
 

 
Author Leise, T.L.; Goldberg, A.; Michael, J.; Montoya, G.; Solow, S.; Molyneux, P.; Vetrivelan, R.; Harrington, M.E.
Title Recurring circadian disruption alters circadian clock sensitivity to resetting Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages
Keywords Animals
Abstract A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20 h light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, e.g., some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time. This article is protected by copyright. All rights reserved.
Address Neuroscience Program, Smith College, Northampton, MA, 01063, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes (down) PMID:30269396 Approved no
Call Number GFZ @ kyba @ Serial 2036
Permanent link to this record
 

 
Author Ma, Q.; Tan, Y.; Chen, X.; Chen, S.; Sun, Y.; Zhou, B.
Title Regulation of the MAPK signaling pathway by miR-421-5p in rats under light pollution Type Journal Article
Year 2018 Publication International Journal of Molecular Medicine Abbreviated Journal Int J Mol Med
Volume in press Issue Pages in press
Keywords Animals
Abstract The present study aimed to explore the difference in the expression profiles of ovarian microRNA sequences in rats in a light pollution environment and rats in a normal light environment. Rats in the control group were exposed to 12h light/dark cycles, while rats in the model group were continuously exposed to 24h light. The ovaries were extracted from the two groups of rats, and Illumina HiSeq 2500 highthroughput sequencing technology was used to detect the differences in microRNA (miRNA) expression among the two groups. Fluorescence quantitative reverse transcriptionpolymerase chain reaction was used to verify the differential expression of miRNA. The present study was designed to experimentally validate the interaction between miR4215p and mitogenactivated protein kinase (MAPK) 7 by using the dualluciferase reporter system, and to explore the expression of proteins in the MAPK signaling pathway with a lentiviral vectormediated small hairpin RNA interference against microRNA4215p. The expression of 45 miRNAs was significantly different. In total, 13 miRNAs were upregulated, of which 5 miRNA sequences were known and 8 were predicted. Furthermore, 32 miRNAs were downregulated, of which 11 miRNA sequences were known and 21 were predicted. The results of the luciferase reporter assay confirmed the targeting association between miR4215p and MAPK7. The expression levels of MAPK and genes in its downstream signaling pathways, including cFos, CREB and cMyc, were downregulated when miR4215p was overexpressed and upregulated when miR4215p was silenced. The differential expression of miRNAs may serve an important role in the development of the ovary in a light pollution environment. miR4215p may regulate ovarian growth and development by targeting the MAPK signaling pathway in light polluted rat ovaries.
Address Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1107-3756 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30221682 Approved no
Call Number GFZ @ kyba @ Serial 2005
Permanent link to this record
 

 
Author Park, C.Y.
Title Night Light Pollution and Ocular Fatigue Type Journal Article
Year 2018 Publication Journal of Korean Medical Science Abbreviated Journal J Korean Med Sci
Volume 33 Issue 38 Pages e257
Keywords Commentary; Human Health
Abstract
Address Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, Korea
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1011-8934 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30220898; PMCID:PMC6137033 Approved no
Call Number GFZ @ kyba @ Serial 2011
Permanent link to this record