|   | 
Details
   web
Records
Author Bará, S., Lima, R.C.
Title Photons without borders: quantifying light pollution transfer between territories Type Journal Article
Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 20 Issue 2 Pages 51-61
Keywords Skyglow
Abstract The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number NC @ ehyde3 @ Serial 2066
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M.
Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ
Volume 16 Issue 8 Pages 472-479
Keywords Ecology, Commentary
Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number NC @ ehyde3 @ Serial 2073
Permanent link to this record
 

 
Author Russo, D., Ancillotto, L., Cistrone, L., Libralato, N., Domer, A., Cohen, S., Korine, C.
Title Effects of artificial illumination on drinking bats: a field test in forest and desert habitats Type Journal Article
Year 2018 Publication Animal Conservation Abbreviated Journal
Volume In press Issue Pages
Keywords Animals
Abstract Bats show pronounced and often‐adverse reactions to artificial illumination at night (ALAN) when commuting, roosting or foraging. ALAN also affects bat drinking activity, at least when lighting occurs over short intervals. We tested whether continuous illumination of drinking sites over 4‐h periods would lead bats to tolerate ALAN and resume drinking in the course of the night. We conducted our experiments in forest (Italy) and desert (Israel) sites to test whether in the latter habitat, where water is scarce, a greater motivation to drink might lead to less adverse bat reactions. We recorded 6853 drinking buzzes and 1647 feeding buzzes from 17 species and one species group. In the forest sites, species that hunt in open spaces or along forest edges showed little (P. pipistrellus and H. savii) or no (P. kuhlii and N. leisleri) drinking activity decrease, while those associated with forest interiors (Barbastella barbastellus, Plecotus auritus and bats in the genus Myotis) exhibited a strong negative response. In the desert sites, all studied species reduced drinking activity, yet in the desert populations of P. kuhlii we recorded stronger adverse reactions only far from human settlements. The harsh reactions that the desert bat species showed towards ALAN rule out any effect of a greater motivation to drink. Illumination had no effect on foraging by most species, except in the forest sites, where Pipistrellus kuhlii and Nyctalus leisleri increased foraging when the light was on, and in the desert sites, where Hypsugo bodenheimeri decreased foraging in such situations. The progressive human encroachment that is taking place in many world regions on both forests and especially deserts, where few sites for drinking are available, may jeopardize bat populations also through increased exposure to ALAN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number NC @ ehyde3 @ Serial 2075
Permanent link to this record
 

 
Author Robertson, B.A., Horváth, G.
Title Color polarization vision mediates the strength of an evolutionary trap Type Journal Article
Year 2018 Publication Wiley Evolutionary Applications Abbreviated Journal
Volume In press Issue Pages
Keywords Animals
Abstract Evolutionary traps are scenarios in which animals are fooled by rapidly changing conditions into preferring poor-quality resources over those that better improve survival and reproductive success. The maladaptive attraction of aquatic insects to artificial sources of horizontally polarized light (e.g., glass buildings, asphalt roads) has become a first model system by which scientists can investigate the behavioral mechanisms that cause traps to occur. We employ this field-based system to experimentally investigate (a) in which portion(s) of the spectrum are polarizationally water-imitating reflectors attractive to nocturnal terrestrial and aquatics insects, and (b) which modern lamp types result in greater attraction in this typical kind of nocturnal polarized light pollution. We found that most aquatic taxa exhibited preferences for lamps based upon their color spectra, most having lowest preference for lamps emitting blue and red light. Yet, despite previously established preference for higher degrees of polarization of reflected light, most aquatic insect families were attracted to traps based upon their unpolarized spectrum. Chironomid midges, alone, showed a preference for the color of lamplight in both the horizontally polarized and unpolarized spectra indicating only this family has evolved to use light in this color range as a source of information to guide its nocturnal habitat selection. These results demonstrate that the color of artificial lighting can exacerbate or reduce its attractiveness to aquatic insects, but that the strength of attractiveness of nocturnal evolutionary traps, and so their demographic consequences, is primarily driven by unpolarized light pollution. This focuses management attention on limiting broad-spectrum light pollution, as well as its intentional deployment to attract insects back to natural habitats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number NC @ ehyde3 @ Serial 2076
Permanent link to this record
 

 
Author Mortazavi, S.A.R., Parhoodeh, S., Hosseini, M.A., Arabi, H., Malakooti, H., Nematollahi, S., Mortazavi, G., Darvish, L., Mortazavi, S.M.J.
Title Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality Type Journal Article
Year 2018 Publication Journal of Biomedical Physics and Engineering Abbreviated Journal
Volume 8 Issue 4 Pages 375-380
Keywords Human Health
Abstract Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.

Objectives: In this study, we examined the effects of covering the screens of smartphones with different filters (changing the effective wavelength of the light) on sleep delay time in 43 healthy students.

Materials and Methods: Volunteer students were asked to go to bed at 23:00 and to use their mobile phones in bed for watching a natural life documentary movie for 60 minutes. No filter was used for one night while amber and blue filters were used for other 2 nights. Photospectrometry method was used to determine the output spectrum of the light passing through the filters used for covering the screens of the mobile phones. The order for utilizing amber or blue filters or using no filter was selected randomly. After 1 hour, the participants were asked to record their sleep delay time measured by a modified form of sleep time record sheet.

Results: The mean sleep delay time for the “no-filter” night was 20.84±9.15 minutes, while the sleep delay times for the nights with amber and blue filters were 15.26±1.04 and 26.33±1.59 minutes, respectively.

Conclusion: The findings obtained in this study support this hypothesis that blue light possibly suppresses the secretion of melatonin more than the longer wavelengths of the visible light spectrum. Using amber filter in this study significantly improved the sleep quality. Altogether, these findings lead us to this conclusion that blocking the short-wavelength component of the light emitted by smartphones’ screens improves human sleep.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number NC @ ehyde3 @ Serial 2077
Permanent link to this record