|   | 
Details
   web
Records
Author Gago-Calderón, A.; Hermoso-Orzáez, M.; De Andres-Diaz, J.; Redrado-Salvatierra, G.
Title Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers Type Journal Article
Year 2018 Publication Energies Abbreviated Journal Energies
Volume 11 Issue 4 Pages 816
Keywords Lighting
Abstract Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number GFZ @ kyba @ Serial 1844
Permanent link to this record
 

 
Author Cho, CH; Yoon, HK; Kang, SG; Kim, L; Lee, E; Lee, HJ
Title Impact of Exposure to Dim Light at Night on Sleep in Female and Comparison with Male Subjects Type Journal Article
Year 2018 Publication Psychiatry Investigation Abbreviated Journal Psychiatry Investig
Volume 15 Issue 5 Pages 520-530
Keywords Human Health
Abstract Light pollution has become a social and health issue. We performed an experimental study to investigate impact of dim light at night (dLAN) on sleep in female subjects, with measurement of salivary melatonin.

Methods:

The 25 female subjects (Group A: 12; Group B: 13 subjects) underwent a nocturnal polysomnography (NPSG) session with no light (Night 1) followed by an NPSG session randomly assigned to two conditions (Group A: 5; Group B: 10 lux) during a whole night of sleep (Night 2). Salivary melatonin was measured before and after sleep on each night. For further investigation, the female and male subjects of our previous study were collected (48 subjects), and differences according to gender were compared.

Results:

dLAN during sleep was significantly associated with decreased total sleep time (TST; F=4.818, p=0.039), sleep efficiency (SE; F=5.072, p=0.034), and Stage R latency (F=4.664, p=0.041) for female subjects, and decreased TST (F=14.971, p<0.001) and SE (F=7.687, p=0.008), and increased wake time after sleep onset (F=6.322, p=0.015) and Stage R (F=5.031, p=0.03), with a night-group interaction (F=4.579, p=0.038) for total sample. However, no significant melatonin changes. There was no significant gender difference of the impact of dLAN on sleep, showing the negative changes in the amount and quality of sleep and the increase in REM sleep in the both gender group under 10 lux condition.

Conclusion:

We found a negative impact of exposure to dLAN on sleep in female as well as in merged subjects. REM sleep showed a pronounced increase under 10 lux than under 5 lux in merged subjects, suggesting the possibility of subtle influences of dLAN on REM sleep.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number GFZ @ kyba @ Serial 1845
Permanent link to this record
 

 
Author Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; Seto, K.C.; Hall, D.; Oda, T.; Wolfe, R.E.; Lin, G.; Golpayegani, N.; Devadiga, S.; Davidson, C.; Sarkar, S.; Praderas, C.; Schmaltz, J.; Boller, R.; Stevens, J.; Ramos González, O.M.; Padilla, E.; Alonso, J.; Detrés, Y.; Armstrong, R.; Miranda, I.; Conte, Y.; Marrero, N.; MacManus, K.; Esch, T.; Masuoka, E.J.
Title NASA's Black Marble nighttime lights product suite Type Journal Article
Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 210 Issue Pages 113-143
Keywords Remote Sensing
Abstract NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 m resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number GFZ @ kyba @ Serial 1846
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM
Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
Year 2018 Publication Trees Abbreviated Journal
Volume 32 Issue 4 Pages 1157-1164
Keywords Plants
Abstract During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number GFZ @ kyba @ Serial 1847
Permanent link to this record
 

 
Author Shlayan, N.; Challapali, K.; Cavalcanti, D.; Oliveira, T.; Yang, Y.
Title A Novel Illuminance Control Strategy for Roadway Lighting Based on Greenshields Macroscopic Traffic Model Type Journal Article
Year 2018 Publication IEEE Photonics Journal Abbreviated Journal IEEE Photonics J.
Volume 10 Issue 1 Pages 1-11
Keywords Lighting; Planning; Economics
Abstract Most street lights currently deployed have constant illumination levels or vary

based on a predetermined schedule. However, with advances in lighting controls, intelligent transportation systems, and the efforts of transportation agencies at regional and national levels to better sustain and manage the transportation system by monitoring the roadway network, many different types of real-time traffic data are available; which enables the implementation of a traffic responsive outdoor light system. The International Commission on Illumination (CIE) has proposed a class-based lighting control model based on a number of roadway parameters, some of which are traffic related. However, the adaptation of the available traffic data to the existing model is not obvious. In addition, the CIE model can be improved to better reflect traffic characteristics to increase energy efficiency of the overall street lighting system. The intention of this research is to quantify the relationship between real-time traffic, and roadway lighting and to develop a control strategy based on real-time traffic data in order to reduce light energy consumption, enhance safety, and maximize throughput of the roadway. Significant energy savings were observed when the proposed control strategy was implemented in two case studies using available lighting and traffic data for Washington, DC, and Montgomery County, MD, representing urban and rural roadway networks, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1943-0655 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number GFZ @ kyba @ Serial 1850
Permanent link to this record