toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. url  doi
openurl 
  Title Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 2 Pages 240  
  Keywords Remote Sensing  
  Abstract Regional economic inequality is a persistent problem for all nations. Meanwhile, satellite-derived night-time light (NTL) data have been extensively used as an efficient proxy measure for economic activity. This study firstly proposes a new method for correction of the NTL data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite and then applies the corrected NTL data to estimate gross domestic product (GDP) at a multi-scale level in China from 2014 to 2017. Secondly, incorporating the two-stage nested Theil decomposition method, multi-scale level regional inequalities are investigated. Finally, by using scatter plots, this paper identifies the relationship between the regional inequality and the level of economic development. The results indicate that: (1) after correction, the NPP-VIIRS NTL data show a statistically positive correlation with GDP, which proves that our correction method is scientifically effective; (2) from 2014 to 2017, overall inequality, within-province inequality, and between-region inequality all declined, However, between-province inequality increased slightly. As for the contributions to overall regional inequality, the within-province inequality was the highest, while the between-province inequality was the lowest; (3) further analysis of within-province inequality reveals that economic inequalities in coastal provinces in China are smaller than in inland provinces; (4) China’s economic development plays an important role in affecting regional inequality, and the extent of influence of economic development on regional inequality is varied across provinces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number LoNNe @ kyba @ Serial 1812  
Permanent link to this record
 

 
Author Lu, H.; Zhang, M.; Sun, W.; Li, W. url  doi
openurl 
  Title Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012 Type Journal Article
  Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 7 Issue 2 Pages 52  
  Keywords Remote Sensing  
  Abstract Investigating the characteristics of urban expansion is helpful in managing the relationship between urbanization and the ecological and environmental issues related to sustainable development. The Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) collects visible and near-infrared light from the Earth’s surface at night without moonlight. It generates effective time series data for mapping the dynamics of urban expansion. As a major urban agglomeration in the world, the Yangtze River Delta Urban Agglomeration (YRDUA) is an important intersection zone of both the “Belt and Road Initiative” and the “Yangtze River Economic Belt” in China. Therefore, this paper analyses urban expansion characteristics of the YRDUA for 1993–2012 from urban extents extracted from the DMSP/OLS for 1993, 1997, 2002, 2007, and 2012. First, calibration procedures are applied to DMSP/OLS data, including intercalibration, intra-annual composition, and inter-annual series correction procedures. Spatial extents are then extracted from the corrected DMSP/OLS data, and a threshold is determined via the spatial comparison method. Finally, three models are used to explore urban expansion characteristics of the YRDUA from expansion rates, expansion spatial patterns, and expansion evaluations. The results show that the urban expansion of the YRDUA occurred at an increasing rate from 1993–2007 and then declined after 2007 with the onset of the global financial crisis. The Suxichang and Ningbo metropolitan circles were seriously affected by the financial crisis, while the Hefei metropolitan circle was not. The urban expansion of the YRDUA moved from the northeast to the southwest over the 20-year period. Urban expansion involved internal infilling over the first 15 years and then evolved into external sprawl and suburbanization after 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number LoNNe @ kyba @ Serial 1813  
Permanent link to this record
 

 
Author Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J. url  doi
openurl 
  Title Mapping nighttime PM 2.5 from VIIRS DNB using a linear mixed-effect model Type Journal Article
  Year 2018 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment  
  Volume 178 Issue Pages 214-222  
  Keywords Remote Sensing  
  Abstract Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ±± 0.12, 0.83 ±0.10±0.10, 0.87 ±± 0.09, 0.83 ±± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number LoNNe @ kyba @ Serial 1814  
Permanent link to this record
 

 
Author Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. url  doi
openurl 
  Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 210 Issue Pages 91-100  
  Keywords  
  Abstract Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.  
  Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevierier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number IDA @ john @ Serial 1816  
Permanent link to this record
 

 
Author Aubé, M.; Simoneau, A. url  doi
openurl 
  Title New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 211 Issue Pages 25-34  
  Keywords  
  Abstract Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.

After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).
 
  Address Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number IDA @ john @ Serial 1818  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: