|   | 
Details
   web
Records
Author Ludvigsen, M.; Berge, J.; Geoffroy, M.; Cohen, J.H.; De La Torre, P.R.; Nornes, S.M.; Singh, H.; Sorensen, A.J.; Daase, M.; Johnsen, G.
Title Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance Type Journal Article
Year 2018 Publication (down) Science Advances Abbreviated Journal Sci Adv
Volume 4 Issue 1 Pages eaap9887
Keywords Animals; Ecology
Abstract Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.
Address Centre for Autonomous Operations and Systems, Department of Biology, NTNU, Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes PMID:29326985; PMCID:PMC5762190 Approved no
Call Number LoNNe @ kyba @ Serial 1806
Permanent link to this record
 

 
Author Mard, J.; Di Baldassarre, G.; Mazzoleni, M.
Title Nighttime light data reveal how flood protection shapes human proximity to rivers Type Journal Article
Year 2018 Publication (down) Science Advances Abbreviated Journal Sci Adv
Volume 4 Issue 8 Pages eaar5779
Keywords Remote Sensing
Abstract To understand the spatiotemporal changes of flood risk, we need to determine the way in which humans adapt and respond to flood events. One adaptation option consists of resettling away from flood-prone areas to prevent or reduce future losses. We use satellite nighttime light data to discern the relationship between long-term changes in human proximity to rivers and the occurrence of catastrophic flood events. Moreover, we explore how these relationships are influenced by different levels of structural flood protection. We found that societies with low protection levels tend to resettle further away from the river after damaging flood events. Conversely, societies with high protection levels show no significant changes in human proximity to rivers. Instead, such societies continue to rely heavily on structural measures, reinforcing flood protection and quickly resettling in flood-prone areas after a flooding event. Our work reveals interesting aspects of human adaptation to flood risk and offers key insights for comparing different risk reduction strategies. In addition, this study provides a framework that can be used to further investigate human response to floods, which is relevant as urbanization of floodplains continues and puts more people and economic assets at risk.
Address IHE Delft Institute for Water Education, 2611 AX Delft, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes PMID:30140738; PMCID:PMC6105301 Approved no
Call Number GFZ @ kyba @ Serial 1989
Permanent link to this record
 

 
Author Dunster, G.P.; de la Iglesia, L.; Ben-Hamo, M.; Nave, C.; Fleischer, J.G.; Panda, S.; de la Iglesia, H.O.
Title Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students Type Journal Article
Year 2018 Publication (down) Science Advances Abbreviated Journal Sci. Adv.
Volume 4 Issue 12 Pages eaau6200
Keywords Human Health
Abstract Most teenagers are chronically sleep deprived. One strategy proposed to lengthen adolescent sleep is to delay secondary school start times. This would allow students to wake up later without shifting their bedtime, which is biologically determined by the circadian clock, resulting in a net increase in sleep. So far, there is no objective quantitative data showing that a single intervention such as delaying the school start time significantly increases daily sleep. The Seattle School District delayed the secondary school start time by nearly an hour. We carried out a pre-/post-research study and show that there was an increase in the daily median sleep duration of 34 min, associated with a 4.5% increase in the median grades of the students and an improvement in attendance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2131
Permanent link to this record
 

 
Author Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S.
Title The influence of human disturbance on wildlife nocturnality Type Journal Article
Year 2018 Publication (down) Science (New York, N.Y.) Abbreviated Journal Science
Volume 360 Issue 6394 Pages 1232-1235
Keywords
Abstract Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.
Address Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA 94720, USA
Corporate Author Thesis
Publisher AAAS Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:29903973 Approved no
Call Number IDA @ john @ Serial 1988
Permanent link to this record
 

 
Author Gaston, K.J.
Title Lighting up the nighttime Type Journal Article
Year 2018 Publication (down) Science (New York, N.Y.) Abbreviated Journal Science
Volume 362 Issue 6416 Pages 744-746
Keywords Commentary
Abstract Among the most visually compelling images of the whole Earth have been those created using data obtained at night by astronauts or from satellites. The proliferation in use of electric lighting—including from industrial, commercial, municipal, and domestic sources—is striking. It sketches the spatial distribution of much of the human population, outlining a substantial proportion of the world's coastline, highlighting a multitude of towns and cities, and drawing the major highways that connect them. The data embodied in these nighttime images have been used to estimate and map levels of energy use, urbanization, and economic activity. They have also been key in focusing attention on the environmental impacts of the artificial light at night itself. Explicit steps need to be taken to limit these impacts, which vary according to the intensity, spectrum, spatial extent, and temporal dynamics of this lighting.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:30442788 Approved no
Call Number GFZ @ kyba @ Serial 2058
Permanent link to this record