|   | 
Details
   web
Records
Author Beccali, M.; Bonomolo, M.; Leccese, F.; Lista, D.; Salvadori, G.
Title On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design Type Journal Article
Year 2018 Publication (up) Energy Abbreviated Journal Energy
Volume in press Issue Pages in press
Keywords Lighting; Economics; Energy; Planning
Abstract Street lighting is an indispensable feature for the night landscape of cities. It is important for road safety, users visual comfort, crime prevention and to augment the perceived personal safety. Realize and maintain an adequate street lighting service is very expensive for municipalities with significant impact on their budgets. For this reason, special attention should be paid to the design of new street lighting systems and to the refurbishment of existing ones, since many of them are inadequate. In light of this it is very important to implement street lighting designs that fulfil lighting requirements avoiding energy waste and light pollution and, at the same time, result economically sustainable for municipalities. In this paper, an original step by step methodology for the lighting, energy and economic analysis of street lighting refurbishment designs has been introduced and explained in detail. The methodology is suitable for use in cities of different sizes. As an applicative example, the methodology has been tested in the town of Pontedera (Italy) and the results are discussed, also providing a sensitivity analysis of the economic feasibility with respect to the variations of electricity prices and investment costs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2020
Permanent link to this record
 

 
Author Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X.
Title Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road Type Journal Article
Year 2018 Publication (up) Energy Abbreviated Journal Energy
Volume 150 Issue Pages 847-859
Keywords Remote Sensing
Abstract Fully understanding spatiotemporal patterns of electric power consumption (EPC) is one of the key questions related to sustainable socioeconomic and environmental development in countries along the Silk Road Economic Belt and the 21st-Century Maritime Silk Road (hereinafter referred to as the Belt and Road countries). However, studies about spatiotemporal patterns of EPC in the Belt and Road countries are still scarce due to the lack of reliable data. This study attempted to investigate spatiotemporal patterns of EPC in the Belt and Road countries from multiple perspectives. Firstly, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime stable light data were used to estimate EPC from 1992 to 2013. Subsequently, the mathematical statistic method, standard deviational ellipse, rank size rule, and correlation analysis were employed to evaluate the EPC change in detail. The results reveal that the EPC growth mainly occurs in the developing countries, especially in China. The geographical distribution of EPC in the Belt and Road countries is oriented in the Northwest-Southeast direction between 1992 and 2013. Based on the rank size rule analysis, the slope values of q are −2.392 and −2.175 between 1992 and 2013, with an average R2 value of 0.664, indicating a clear clustering pattern of EPC. It is also proved that GDP is a more important impact factor to EPC than the population. Our findings can offer an effective way to understand spatiotemporal evolution characteristics of EPC in the Belt and Road countries, and provide references for regional socioeconomic development and cooperation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2487
Permanent link to this record
 

 
Author Do, Q.-T.; Shapiro, J.N.; Elvidge, C.D.; Abdel-Jelil, M.; Ahn, D.P.; Baugh, K.; Hansen-Lewis, J.; Zhizhin, M.; Bazilian, M.D.
Title Terrorism, geopolitics, and oil security: Using remote sensing to estimate oil production of the Islamic State Type Journal Article
Year 2018 Publication (up) Energy Research & Social Science Abbreviated Journal Energy Research & Social Science
Volume 44 Issue Pages 411-418
Keywords Remote Sensing; Economics
Abstract As the world’s most traded commodity, oil production is typically well monitored and analyzed. It also has established links to geopolitics, international relations, and security. Despite this attention, the illicit production, refining, and trade of oil and derivative products occur all over the world and provide significant revenues outside of the oversight and regulation of governments. A prominent manifestation of this phenomenon is how terrorist and insurgent organizations—including the Islamic State group, also known as ISIL/ISIS or Daesh—use oil as a revenue source. Understanding the spatial and temporal variation in production can help determine the scale of operations, technical capacity, and revenue streams. This information, in turn, can inform both security and reconstruction strategies. To this end, we use satellite multi-spectral imaging and ground-truth pre-war output data to effectively construct a real-time census of oil production in areas controlled by the ISIL terrorist group. More broadly, remotely measuring the activity of extractive industries in conflict-affected areas without reliable administrative data can support a broad range of public policy and decisions and military operations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-6296 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1864
Permanent link to this record
 

 
Author Elvidge, C.D.; Bazilian, M.D.; Zhizhin, M.; Ghosh, T.; Baugh, K.; Hsu, F.-C.
Title The potential role of natural gas flaring in meeting greenhouse gas mitigation targets Type Journal Article
Year 2018 Publication (up) Energy Strategy Reviews Abbreviated Journal Energy Strategy Reviews
Volume 20 Issue Pages 156-162
Keywords Remote Sensing
Abstract In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211467X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2055
Permanent link to this record
 

 
Author Bagan, H.; Borjigin, H.; Yamagata, Y.
Title Assessing nighttime lights for mapping the urban areas of 50 cities across the globe Type Journal Article
Year 2018 Publication (up) Environment and Planning B: Urban Analytics and City Science Abbreviated Journal Environment and Planning B: Urban Analytics and City Science
Volume Issue Pages 2399808317752926
Keywords Remote Sensing
Abstract Nighttime data from the Defense Meteorological Satellite Program Operational Linescan System have been widely used to map urban/built-up areas (hereafter referred to as “built-up area”), but to date there has not been a geographically comprehensive evaluation of the effectiveness of using nighttime lights data to map urban areas. We created accurate, convenient, and scalable grid cells based on Defense Meteorological Satellite Program/Operational Linescan System nighttime light pixels. We then calculated the density of Landsat-derived built-up areas within each grid cell. We explored the relationship between Defense Meteorological Satellite Program/Operational Linescan System nighttime lights data and the density of built-up areas to assess the utility of nighttime lights for mapping urban areas in 50 cities across the globe. We found that the brightness of nighttime lights was only in moderate agreement with the density of built-up areas; moreover, correlations between nighttime lights and Landsat-derived built-up areas were weak. Even in relatively sparsely populated urban regions (where the density of the built-up area is less than 20%), the highest correlation coefficient (R2) was only 0.4. Furthermore, nighttime lights showed lighted areas that extended beyond the area of large cities, and nighttime lights reduced the area of small cities. The results suggest that it is difficult to use the regression model to calibrate the Defense Meteorological Satellite Program/Operational Linescan System nighttime lights to fit urban built up areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2399-8083 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1795
Permanent link to this record