toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Park, C.Y. url  doi
openurl 
  Title Night Light Pollution and Ocular Fatigue Type Journal Article
  Year 2018 Publication (up) Journal of Korean Medical Science Abbreviated Journal J Korean Med Sci  
  Volume 33 Issue 38 Pages e257  
  Keywords Commentary; Human Health  
  Abstract  
  Address Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, Korea  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-8934 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30220898; PMCID:PMC6137033 Approved no  
  Call Number GFZ @ kyba @ Serial 2011  
Permanent link to this record
 

 
Author El-Bakry, H.A.; Ismail, I.A.; Soliman, S.S. url  doi
openurl 
  Title Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways Type Journal Article
  Year 2018 Publication (up) Journal of Photochemistry and Photobiology. B, Biology Abbreviated Journal J Photochem Photobiol B  
  Volume 186 Issue Pages 69-80  
  Keywords Animals  
  Abstract The awareness of the interrelationship between immunosenescence and constant light exposure can provide new insights into the consequences of excessive exposure to light at night due to light pollution or shift work. Here, we investigated whether constant light exposure (LL) acts as an inducer of immunosenescence. We also determined the role of melatonin or turmeric in reversing the putative effects of constant light and explored for the first time the underlying molecular mechanisms. Young (3-4-month-old) rats were exposed daily to LL alone or in combination with each of melatonin and turmeric for 12weeks. A group of aged rats (18-months old; n=6) was used as a reference for natural immunosenescence. Constant light exposure resulted in remarkable pathophysiological alterations resembling those noticed in normal aged rats, manifested as apparent decreases in antioxidant activities as well as Nrf2 and DJ-1 expressions, striking augmentation in oxidative stress, proinflammatory cytokines and expression of TNFalpha, Bax, and p53 genes, and deleterious changes of lymphoid organs, Co-administration of melatonin or turmeric was able to reverse all alterations induced by LL through upregulation of Nrf2/DJ-1 and downregulation of p53/Bax pathways. These data suggest that LL accelerates immunosenescence via oxidative stress and apoptotic pathways. They also demonstrate for the first time that turmeric is comparable to melatonin in boosting the immune function and counteracting the LL-associated immunosenescence. These effects suggest that turmeric supplementation can be used as an inexpensive intervention to prevent circadian disruption-related immunosenescence. However, to validate the effects of turmeric on humans further studies are warranted.  
  Address Department of Zoology & Entomology, Faculty of Science, Minia University, Egypt  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-1344 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30015062 Approved no  
  Call Number GFZ @ kyba @ Serial 1984  
Permanent link to this record
 

 
Author Kozaki, T.; Hidaka, Y.; Takakura, J.-Y.; Kusano, Y. url  doi
openurl 
  Title Suppression of salivary melatonin secretion under 100-Hz flickering and non-flickering blue light Type Journal Article
  Year 2018 Publication (up) Journal of Physiological Anthropology Abbreviated Journal J Physiol Anthropol  
  Volume 37 Issue 1 Pages 23  
  Keywords Human Health  
  Abstract BACKGROUND: Bright light at night is known to suppress melatonin secretion. Novel photoreceptors named intrinsically photosensitive retinal ganglion cells (ipRGCs) are mainly responsible for projecting dark/bright information to the suprachiasmatic nucleus and thus regulating the circadian system. However, it has been shown that the amplitude of the electroretinogram of ipRGCs is considerably lower under flickering light at 100 Hz than at 1-5 Hz, suggesting that flickering light may also affect the circadian system. Therefore, in this study, we evaluated light-induced melatonin suppression under flickering and non-flickering light. METHODS: Twelve male participants between the ages of 20 and 23 years (mean +/- S.D. = 21.6 +/- 1.5 years) were exposed to three light conditions (dim, 100-Hz flickering, and non-flickering blue light) from 1:00 A.M. to 2:30 A.M., and saliva samples were obtained just before 1:00 A.M. and at 1:15, 1:30, 2:00, and 2:30 A.M. RESULTS: A repeated measures t test with Bonferroni correction showed that at 1:15 A.M., melatonin concentrations were significantly lower following exposure to non-flickering light compared with dim light, whereas there was no significant difference between the dim and 100-Hz flickering light conditions. By contrast, after 1:30 A.M., the mean melatonin concentrations were significantly lower under both 100-Hz flickering and non-flickering light than under dim light. CONCLUSION: Although melatonin suppression rate tended to be lower under 100-Hz flickering light than under non-flickering light at the initial 15 min of the light exposure, the present study suggests that 100-Hz flickering light may have the same impact on melatonin secretion as non-flickering light.  
  Address Department of Health and Nutrition Sciences, Nishikyushu University, Kanzaki, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1880-6791 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30340620 Approved no  
  Call Number GFZ @ kyba @ Serial 2039  
Permanent link to this record
 

 
Author Lee, S.; Kakitsuba, N.; Katsuura, T. url  doi
openurl 
  Title Do green-blocking glasses enhance the nonvisual effects of white polychromatic light? Type Journal Article
  Year 2018 Publication (up) Journal of Physiological Anthropology Abbreviated Journal J Physiol Anthropol  
  Volume 37 Issue 1 Pages 29  
  Keywords Human Health; Vision  
  Abstract BACKGROUND: It is well known that light containing the blue component stimulates the intrinsically photosensitive retinal ganglion cells (ipRGCs) and plays a role in melatonin suppression and pupillary constriction. In our previous studies, we verified that simultaneous exposure to blue and green light resulted in less pupillary constriction than blue light exposure. Hence, we hypothesized that the nonvisual effects of polychromatic white light might be increased by blocking the green component. Therefore, we conducted an experiment using optical filters that blocked blue or green component and examined the nonvisual effects of these lights on pupillary constriction and electroencephalogram power spectra. METHODS: Ten healthy young males participated in this study. The participant sat on a chair with his eyes facing an integrating sphere. After 10 min of light adaptation, the participant's left eye was exposed to white pulsed light (1000 lx; pulse width 2.5 ms) every 10 s with a blue-blocking glasses, a green-blocking glasses, or control glasses (no lens), and pupillary constriction was measured. Then, after rest for 10 min, the participant was exposed a continuous white light of 1000 lx with a blue- or green-blocking glasses or control glasses and electroencephalogram was measured. RESULTS: Pupillary constriction with the blue-blocking glasses was significantly less than that observed with the green-blocking glasses. Furthermore, pupillary constriction under the green-blocking glasses was significantly greater than that observed with the control glasses. CONCLUSIONS: A reduction in the green component of light facilitated pupillary constriction. Thus, the effects of polychromatic white light containing blue and green components on ipRGCs are apparently increased by removing the green component.  
  Address Graduate School of Engineering, Chiba University, Chiba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1880-6791 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30563575; PMCID:PMC6299521 Approved no  
  Call Number GFZ @ kyba @ Serial 2153  
Permanent link to this record
 

 
Author Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M. url  doi
openurl 
  Title Measuring night sky brightness: methods and challenges Type Journal Article
  Year 2018 Publication (up) Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 205 Issue Pages 278-290  
  Keywords skyglow  
  Abstract Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: