toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hoffmann, J.; Palme, R.; Eccard, J.A. url  doi
openurl 
  Title Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations Type Journal Article
  Year 2018 Publication (up) Environmental Pollution Abbreviated Journal Environ Pollut  
  Volume 238 Issue Pages 844-851  
  Keywords Animals  
  Abstract Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions.  
  Address Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29627754 Approved no  
  Call Number GFZ @ kyba @ Serial 1848  
Permanent link to this record
 

 
Author Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Type Journal Article
  Year 2018 Publication (up) Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 240 Issue Pages 630-638  
  Keywords Plants; Ecology  
  Abstract The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1900  
Permanent link to this record
 

 
Author Raap, T.; Thys, B.; Grunst, A.S.; Grunst, M.L.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour Type Journal Article
  Year 2018 Publication (up) Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume in press Issue Pages in press  
  Keywords Animals  
  Abstract Light pollution or artificial light at night (ALAN) is an increasing, worldwide challenge that affects many aspects of animal behaviour. Interestingly, the response to ALAN varies widely among individuals within a population and variation in personality (consistent individual differences in behaviour) may be an important factor explaining this variation. Consistent individual differences in exploration behaviour in particular may relate to the response to ALAN, as increasing evidence indicates its relation with how individuals respond to novelty and how they cope with anthropogenic modifications of the environment. Here, we assayed exploration behaviour in a novel environment as a proxy for personality variation in great tits (Parus major). We observed individual sleep behaviour over two consecutive nights, with birds sleeping under natural dark conditions the first night and confronted with ALAN inside the nest box on the second night, representing a modified and novel roosting environment. We examined whether roosting decisions when confronted with a camera (novel object), and subsequently with ALAN, were personality-dependent, as this could potentially create sampling bias. Finally, we assessed whether experimentally challenging individuals with ALAN induced personality-dependent changes in sleep behaviour.

Slow and fast explorers were equally likely to roost in a nest box when confronted with either a camera or artificial light inside, indicating the absence of personality-dependent sampling bias or avoidance of exposure to ALAN. Moreover, slow and fast explorers were equally disrupted in their sleep behaviour when challenged with ALAN. Whether other behavioural and physiological effects of ALAN are personality-dependent remains to be determined. Moreover, the sensitivity to disturbance of different behavioural types might depend on the behavioural context and the specific type of challenge in question. In our increasingly urbanized world, determining whether the effects of anthropogenic stressors depend on personality type will be of paramount importance as it may affect population dynamics.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2008  
Permanent link to this record
 

 
Author Hu, Z.; Hu, H.; Huang, Y. url  doi
openurl 
  Title Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data Type Journal Article
  Year 2018 Publication (up) Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 239 Issue Pages 30-42  
  Keywords Animals; Remote Sensing  
  Abstract Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the “Florida Statewide Nesting Beach Survey program”. We used the new generation of satellite sensor “Visible Infrared Imaging Radiometer Suite (VIIRS)” (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45 degrees of elevation (>1.14x10(-11) Wm(-2)sr(-1)). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.  
  Address Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA. Electronic address: Lucy.Huang@tamucc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29649758 Approved no  
  Call Number GFZ @ kyba @ Serial 1855  
Permanent link to this record
 

 
Author Farnworth, B.; Innes, J.; Kelly, C.; Littler, R.; Waas, J.R. url  doi
openurl 
  Title Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta Type Journal Article
  Year 2018 Publication (up) Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 236 Issue Pages 82-90  
  Keywords Animals  
  Abstract Avoiding foraging under increased predation risk is a common anti-predator behaviour. Using artificial light to amplify predation risk at ecologically valuable sites has been proposed to deter introduced mice (Mus musculus) and ship rats (Rattus rattus) from degrading biodiversity in island ecosystems. However, light may adversely affect native species; in particular, little is known about invertebrate responses to altered lighting regimes. We investigated how endemic orthopterans responded to artificial light at Maungatautari Ecological Island (Waikato, New Zealand). We predicted that based on their nocturnal behaviour, ecology and evolutionary history, tree weta (Hemideina thoracica) and cave weta (Rhaphidophoridae) would reduce their activity under illumination. Experimental stations (n=15) experienced three evenings under each treatment (order randomised): (a) light (illuminated LED fixture), (b) dark (unilluminated LED fixture) and (c) baseline (no lighting fixture). Weta visitation rates were analysed from images captured on infra-red trail cameras set up at each station. Light significantly reduced the number of observations of cave (71.7% reduction) and tree weta (87.5% reduction). In observations where sex was distinguishable (53% of all visits), male tree weta were observed significantly more often (85% of visits) than females (15% of visits) and while males avoided illuminated sites, no detectable difference was observed across treatments for females. Sex could not be distinguished for cave weta. Our findings have implications for the use of light as a novel pest management strategy, and for the conservation of invertebrate diversity and abundance within natural and urban ecosystems worldwide that may be affected by light pollution.  
  Address Biological Sciences, School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand. Electronic address: waasur@waikato.ac.nz  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29414377 Approved no  
  Call Number GFZ @ kyba @ Serial 1856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: