Records |
Author |
Windle, A. E., Hooley, D. S., & Johnston, D. W. |
Title |
Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches |
Type |
Journal Article |
Year |
2018 |
Publication  |
Frontiers in Marine Science |
Abbreviated Journal |
|
Volume |
5 |
Issue |
493 |
Pages |
|
Keywords |
Instrumentation; Animals; Skyglow |
Abstract |
Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2315 |
Permanent link to this record |
|
|
|
Author |
Gonzalez, M.M.C.; Golombek, D.A. |
Title |
Editorial: Let There Be Light: Biological Impact of Light Exposure in the Laboratory and the Clinic |
Type |
Journal Article |
Year |
2018 |
Publication  |
Frontiers in Neurology |
Abbreviated Journal |
Front Neurol |
Volume |
9 |
Issue |
|
Pages |
|
Keywords |
Commentary; Animals |
Abstract |
|
Address |
Department of Science and Technology, Universidad Nacional de Quilmes, Bernal, Argentina |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-2295 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30356725; PMCID:PMC6189324 |
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2072 |
Permanent link to this record |
|
|
|
Author |
Gonzalez, M.M.C. |
Title |
Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents |
Type |
Journal Article |
Year |
2018 |
Publication  |
Frontiers in Neurology |
Abbreviated Journal |
Front Neurol |
Volume |
9 |
Issue |
|
Pages |
609 |
Keywords |
Animals; Review |
Abstract |
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results. |
Address |
Seccion Cronobiologia y Sueno, Instituto Ferrero de Neurologia y Sueno, Buenos Aires, Argentina |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-2295 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30116218; PMCID:PMC6084421 |
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2084 |
Permanent link to this record |
|
|
|
Author |
McGlashan, E.M.; Poudel, G.R.; Vidafar, P.; Drummond, S.P.A.; Cain, S.W. |
Title |
Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light |
Type |
Journal Article |
Year |
2018 |
Publication  |
Frontiers in Neurology |
Abbreviated Journal |
Front. Neurol. |
Volume |
9 |
Issue |
|
Pages |
|
Keywords |
Human Health |
Abstract |
Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-2295 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2114 |
Permanent link to this record |
|
|
|
Author |
Wang, L.; Liu, X.; Liu, Z.; Wang, X.; Lei, C.; Zhu, F. |
Title |
Members of the neuropeptide transcriptional network in Helicoverpa armigera and their expression in response to light stress |
Type |
Journal Article |
Year |
2018 |
Publication  |
Gene |
Abbreviated Journal |
Gene |
Volume |
671 |
Issue |
|
Pages |
67-77 |
Keywords |
Animals |
Abstract |
Neuropeptides and peptide hormones play central roles in the regulation of various types of insect physiology and behavior. Artificial light at night, a form of environmental stress, has recently been regarded as a source of light stress on nocturnal insects. Because related genomic information is not available, molecular biological studies on the response of neuropeptides in nocturnal insects to light stress are limited. Based on the de novo sequencing of the Helicoverpa armigera head transcriptome, we obtained 124,960 unigenes. Of these, the number of unigenes annotated as neuropeptides and peptide hormones, neurotransmitter precursor processing enzymes, and neurotransmitter receptors were 34, 17, and 58, respectively. Under light stress, there were sex-specific differences in gene expression measured by qRT-PCR. The IMFamide, leucokinin and sNPF genes were differentially expressed at the mRNA level in males but not in females in response to light stress. The results provide new insights on the diversity of the neuropeptide transcriptional network of H. armigera. In addition, some neuropeptides exhibited sex-specific differential expression in response to light stress. Taken collectively, these results not only expand the catalog of known insect neuropeptides but also provide a framework for future functional studies on the physiological roles they play in the light stress response behavior of nocturnal moths. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0378-1119 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1910 |
Permanent link to this record |