|   | 
Details
   web
Records
Author Hu, Z.; Hu, H.; Huang, Y.
Title Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data Type Journal Article
Year 2018 Publication (up) Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 239 Issue Pages 30-42
Keywords Animals; Remote Sensing
Abstract Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the “Florida Statewide Nesting Beach Survey program”. We used the new generation of satellite sensor “Visible Infrared Imaging Radiometer Suite (VIIRS)” (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45 degrees of elevation (>1.14x10(-11) Wm(-2)sr(-1)). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.
Address Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA. Electronic address: Lucy.Huang@tamucc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:29649758 Approved no
Call Number GFZ @ kyba @ Serial 1855
Permanent link to this record
 

 
Author Farnworth, B.; Innes, J.; Kelly, C.; Littler, R.; Waas, J.R.
Title Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta Type Journal Article
Year 2018 Publication (up) Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 236 Issue Pages 82-90
Keywords Animals
Abstract Avoiding foraging under increased predation risk is a common anti-predator behaviour. Using artificial light to amplify predation risk at ecologically valuable sites has been proposed to deter introduced mice (Mus musculus) and ship rats (Rattus rattus) from degrading biodiversity in island ecosystems. However, light may adversely affect native species; in particular, little is known about invertebrate responses to altered lighting regimes. We investigated how endemic orthopterans responded to artificial light at Maungatautari Ecological Island (Waikato, New Zealand). We predicted that based on their nocturnal behaviour, ecology and evolutionary history, tree weta (Hemideina thoracica) and cave weta (Rhaphidophoridae) would reduce their activity under illumination. Experimental stations (n=15) experienced three evenings under each treatment (order randomised): (a) light (illuminated LED fixture), (b) dark (unilluminated LED fixture) and (c) baseline (no lighting fixture). Weta visitation rates were analysed from images captured on infra-red trail cameras set up at each station. Light significantly reduced the number of observations of cave (71.7% reduction) and tree weta (87.5% reduction). In observations where sex was distinguishable (53% of all visits), male tree weta were observed significantly more often (85% of visits) than females (15% of visits) and while males avoided illuminated sites, no detectable difference was observed across treatments for females. Sex could not be distinguished for cave weta. Our findings have implications for the use of light as a novel pest management strategy, and for the conservation of invertebrate diversity and abundance within natural and urban ecosystems worldwide that may be affected by light pollution.
Address Biological Sciences, School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand. Electronic address: waasur@waikato.ac.nz
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:29414377 Approved no
Call Number GFZ @ kyba @ Serial 1856
Permanent link to this record
 

 
Author Pulgar, J.; Zeballos, D.; Vargas, J.; Aldana, M.; Manriquez, P.; Manriquez, K.; Quijon, P.A.; Widdicombe, S.; Anguita, C.; Quintanilla, D.; Duarte, C.
Title Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN) Type Journal Article
Year 2018 Publication (up) Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 244 Issue Pages 361-366
Keywords Animals
Abstract The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.
Address Departamento de Ecologia & Biodiversidad, Facultad de Ciencia de la Vida, Universidad Andres Bello, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepcion, Concepcion, Chile
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:30352350 Approved no
Call Number GFZ @ kyba @ Serial 2043
Permanent link to this record
 

 
Author Schuler, L.D.; Schatz, R.; Berweger, C.D.
Title From global radiance to an increased local political awareness of light pollution Type Journal Article
Year 2018 Publication (up) Environmental Science & Policy Abbreviated Journal Environmental Science & Policy
Volume 89 Issue Pages 142-152
Keywords Remote Sensing; Public Safety; Animals
Abstract We present a novel transparent method to analyze measurements of the Suomi NPP (Suomi National Polar-orbiting Partnership) satellite in night vision, into luminous intensity and luminance on the community level, with a special focus to address light planners and non-experts, and for the first time, to further address politicians, decision-makers and law-makers, and governmental agencies. We checked the propagated efficiency of road lighting and its impact on luminous flux, and identified a waste of light emissions in the largest city of Switzerland, Zurich. We looked at security (issues like criminal acts) and found no correlation with communities’ luminous intensity. We assessed road safety (accidents) against local luminance and found no evidence of darkness being more risky when the overall distribution of illuminance on roads is considered. We screened crayfish habitats in the Canton of Zurich against local illuminance and found clear evidence of preferred darkness for the living. Based on this finding, we propose an upper limit for light immissions in the crayfish habitats. These four analyses have been chosen to demonstrate the usefulness of Suomi NPP's coverage in combination with our approach. We could apply it to ecological, social and economical topics. We hope others will follow and we can draw more attention of governments to take action to reduce the light pollution on local levels, like Langnau am Albis of Switzerland has exemplified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1965
Permanent link to this record
 

 
Author Zapata, M.J.; Sullivan, S.M.P.; Gray, S.M.
Title Artificial Lighting at Night in Estuaries—Implications from Individuals to Ecosystems Type Journal Article
Year 2018 Publication (up) Estuaries and Coasts Abbreviated Journal
Volume In press Issue Pages
Keywords Animals; Ecology
Abstract Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial “lightscapes” are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual- to community- and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2116
Permanent link to this record