|
Records |
Links |
|
Author |
Raap, T.; Pinxten, R.; Eens, M. |

|
|
Title |
Cavities shield birds from effects of artificial light at night on sleep |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
329 |
Issue |
8-9 |
Pages |
449-456 |
|
|
Keywords |
Animals |
|
|
Abstract |
Light pollution is an ever increasing worldwide problem disrupting animal behavior. Artificial light at night (ALAN) has been shown to affect sleep in wild birds. Even cavity-nesting bird species may be affected when sleeping inside their cavity. Correlational studies suggest that light from outside the cavity/nest box, for example from street lights, may affect sleep. We used an experimental design to study to what extent nest boxes shield animals from effects of ALAN on sleep. We recorded individual sleep behavior of free-living great tits (Parus major) that were roosting in dark nest boxes and exposed their nest box entrance to ALAN the following night (1.6 lux white LED light; a similar light intensity as was found at nest boxes near street lights). Their behavior was compared to that of control birds sleeping in dark nest boxes on both nights. Our experimental treatment did not affect sleep behavior. Sleep behavior of birds in the control group did not differ from that of individuals in the light treated group. Our results suggest that during winter cavities shield birds from some effects of ALAN. Furthermore, given that effects of ALAN and exposure to artificial light are species-, sex-, and season-dependent, it is important that studies using wild animals quantify individual exposure to light pollution, and be cautious in the interpretation and generalization of the effects, or lack thereof, from light pollution. Rigorous studies are necessary to examine individual light exposure and its consequences in cavity- and open-nesting birds. |
|
|
Address |
Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29781104 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1912 |
|
Permanent link to this record |
|
|
|
|
Author |
van Grunsven, R.H.A.; Jahnichen, D.; Grubisic, M.; Hölker, F. |

|
|
Title |
Slugs (Arionidae) benefit from nocturnal artificial illumination |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
329 |
Issue |
8-9 |
Pages |
429-433 |
|
|
Keywords |
Animals |
|
|
Abstract |
Artificial illumination increases around the globe and this has been found to affect many groups of organisms and ecosystems. By manipulating nocturnal illumination using one large experimental field site with 24 streetlights and one dark control, we assessed the impact of artificial illumination on slugs over a period of 4 years. The number of slugs, primarily Arionidae, increased strongly in the illuminated site but not on the dark site. There are several nonexclusive explanations for this effect, including reduced predation and increased food quality in the form of carcasses of insects attracted by the light. As slugs play an important role in ecosystems and are also important pest species, the increase of slugs under artificial illumination cannot only affect ecosystem functioning but also have important economic consequences. |
|
|
Address |
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29761669 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1913 |
|
Permanent link to this record |
|
|
|
|
Author |
Baddiley, C. |

|
|
Title |
Light pollution modelling, and measurements at Malvern Hills AONB, of county conversion to blue rich LEDs |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
219 |
Issue |
|
Pages |
142-173 |
|
|
Keywords |
Skyglow |
|
|
Abstract |
The introduction of blue rich colour, Correlated-Colour-Temperature (CCT) 6000K road lighting could increase skyglow significantly compared with CCT 3000K types, if the blue content reaches the sky.
Highways England have a policy for lighting specification on motorways advised by the author's work. This is a categorised environmental impact point system of summed brightness as a function of angle from vertically down to the cut off angle; but with no CCT limitation.
Modelling was done for Malvern-Hills Area-of-Outstanding-Natural-Beauty (MHAONB), for the nighttime environmental impact of the LED replacement of Low-Pressure-Sodium throughout Herefordshire. The study was extended to include High-Pressure-Sodium and to LEDs at several CCTs, for the same Photopic ground illuminance.
Dark-Sky-Survey geographic location results for the MHAONB (2012) are described. Near-Zenith sky brightness photometry became continuous from 2016 at 2 minute intervals in all weathers, not just clear nights, with a networked calibrated Unihedron Lensed Sky Quality Meter (LSQM). Samples were also taken of all-sky camera images, corrected for vignetting and near-Zenith calibrated with the LSQM, to study weather effects, Milky Way contribution, and Herefordshire lighting conversion to blue-rich LEDs (2013-15), compared with the less converted Severn valley direction.
Time-plots and histogram analysis showed a small reduction in brightness (2012-2018), 0.1 mag.arcsec−2. Most variation is from increased sampling of distant cloud cover effects. Mist or low cloud on the horizon obscures light sources beyond reducing local skyglow, while high cloud reflects, increasing clear sky brightness. The Milky Way is critically 20% above background. Darkest periods near Zenith reach 21.1 mag.arcsec−2, to 21.2 after rain or surrounding low-cloud or poor-visibility. Clear-sky brightness decreases into early hours (∼0.03 mag.arcsec−2/hr); dimming effects were not seen.
The Zenith brightness is still set by distant cities, while towards the horizon, commercial and private uncontrolled non-directional LED lighting is increasing, negating the improvements in road lighting. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1914 |
|
Permanent link to this record |
|
|
|
|
Author |
Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. |

|
|
Title |
Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce ( Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Environmental and Experimental Botany |
Abbreviated Journal |
Environmental and Experimental Botany |
|
|
Volume |
153 |
Issue |
|
Pages |
63-71 |
|
|
Keywords |
Plants |
|
|
Abstract |
Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0098-8472 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1915 |
|
Permanent link to this record |
|
|
|
|
Author |
Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J. |

|
|
Title |
Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
Proc Natl Acad Sci U S A |
|
|
Volume |
115 |
Issue |
23 |
Pages |
E5390-E5399 |
|
|
Keywords |
Human Health |
|
|
Abstract |
Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation. |
|
|
Address |
Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0027-8424 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29784788 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1916 |
|
Permanent link to this record |