toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Voigt, C.C.; Rehnig, K.; Lindecke, O.; Petersons, G. url  doi
openurl 
  Title Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 18 Pages 9353-9361  
  Keywords Animals  
  Abstract The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.  
  Address Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30377506; PMCID:PMC6194273 Approved no  
  Call Number NC @ ehyde3 @ Serial (down) 2074  
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. url  doi
openurl 
  Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
  Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ  
  Volume 16 Issue 8 Pages 472-479  
  Keywords Ecology, Commentary  
  Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-9295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial (down) 2073  
Permanent link to this record
 

 
Author Gonzalez, M.M.C.; Golombek, D.A. url  doi
openurl 
  Title Editorial: Let There Be Light: Biological Impact of Light Exposure in the Laboratory and the Clinic Type Journal Article
  Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front Neurol  
  Volume 9 Issue Pages  
  Keywords Commentary; Animals  
  Abstract  
  Address Department of Science and Technology, Universidad Nacional de Quilmes, Bernal, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-2295 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30356725; PMCID:PMC6189324 Approved no  
  Call Number NC @ ehyde3 @ Serial (down) 2072  
Permanent link to this record
 

 
Author Griepentrog, J.E.; Labiner, H.E.; Gunn, S.R.; Rosengart, M.R. url  doi
openurl 
  Title Bright environmental light improves the sleepiness of nightshift ICU nurses Type Journal Article
  Year 2018 Publication Critical Care (London, England) Abbreviated Journal Crit Care  
  Volume 22 Issue 1 Pages 295  
  Keywords Circadian; Light; Night shift; Nurse; Shift work sleep disorder  
  Abstract BACKGROUND: Shift work can disturb circadian homeostasis and result in fatigue, excessive sleepiness, and reduced quality of life. Light therapy has been shown to impart positive effects in night shift workers. We sought to determine whether or not prolonged exposure to bright light during a night shift reduces sleepiness and enhances psychomotor performance among ICU nurses.

METHODS: This is a single-center randomized, crossover clinical trial at a surgical trauma ICU. ICU nurses working a night shift were exposed to a 10-h period of high illuminance (1500-2000 lx) white light compared to standard ambient fluorescent lighting of the hospital. They then completed the Stanford Sleepiness Scale and the Psychomotor Vigilance Test. The primary and secondary endpoints were analyzed using the paired t test. A p value <0.05 was considered significant.

RESULTS: A total of 43 matched pairs completed both lighting exposures and were analyzed. When exposed to high illuminance lighting subjects experienced reduced sleepiness scores on the Stanford Sleepiness Scale than when exposed to standard hospital lighting: mean (sem) 2.6 (0.2) vs. 3.0 (0.2), p = 0.03. However, they committed more psychomotor errors: 2.3 (0.2) vs. 1.7 (0.2), p = 0.03.

CONCLUSIONS: A bright lighting environment for ICU nurses working the night shift reduces sleepiness but increases the number of psychomotor errors.

TRIAL REGISTRATION: ClinicalTrials.gov, NCT03331822 . Retrospectively registered on 6 November 2017.
 
  Address Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA. rosengartmr@upmc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8535 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30424793 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2070  
Permanent link to this record
 

 
Author Bará, S., Lima, R.C. url  doi
openurl 
  Title Photons without borders: quantifying light pollution transfer between territories Type Journal Article
  Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 20 Issue 2 Pages 51-61  
  Keywords Skyglow  
  Abstract The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial (down) 2066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: