toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, Y.; Cheng, M.; Su, T.; Gao, T.; Yu, W. url  doi
openurl 
  Title Constant light exposure aggravates POMC-mediated muscle wasting associated with hypothalamic alteration of circadian clock and SIRT1 in endotoxemia rats Type Journal Article
  Year 2018 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.  
  Address Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China. Electronic address: yudrnj2@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-291X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30528733 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2134  
Permanent link to this record
 

 
Author Jan Stenvers, D.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. url  doi
openurl 
  Title Circadian clocks and insulin resistance Type Journal Article
  Year 2018 Publication Nature Reviews. Endocrinology Abbreviated Journal Nat Rev Endocrinol  
  Volume in press Issue Pages  
  Keywords Review; Human Health  
  Abstract Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.  
  Address Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands. a.kalsbeek@nin.knaw.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-5029 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30531917 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2133  
Permanent link to this record
 

 
Author Owens, A.C.S.; Lewis, S.M. url  doi
openurl 
  Title The impact of artificial light at night on nocturnal insects: A review and synthesis Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 22 Pages 11337-11358  
  Keywords Review; Animals  
  Abstract In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.  
  Address Department of Biology Tufts University Medford Massachusetts  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30519447; PMCID:PMC6262936 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2132  
Permanent link to this record
 

 
Author Dunster, G.P.; de la Iglesia, L.; Ben-Hamo, M.; Nave, C.; Fleischer, J.G.; Panda, S.; de la Iglesia, H.O. url  doi
openurl 
  Title Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students Type Journal Article
  Year 2018 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 4 Issue 12 Pages eaau6200  
  Keywords Human Health  
  Abstract Most teenagers are chronically sleep deprived. One strategy proposed to lengthen adolescent sleep is to delay secondary school start times. This would allow students to wake up later without shifting their bedtime, which is biologically determined by the circadian clock, resulting in a net increase in sleep. So far, there is no objective quantitative data showing that a single intervention such as delaying the school start time significantly increases daily sleep. The Seattle School District delayed the secondary school start time by nearly an hour. We carried out a pre-/post-research study and show that there was an increase in the daily median sleep duration of 34 min, associated with a 4.5% increase in the median grades of the students and an improvement in attendance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2131  
Permanent link to this record
 

 
Author Bombieri, G.; Delgado, M. del M.; Russo, L.F.; Garrote, P.J.; López-Bao, J.V.; Fedriani, J.M.; Penteriani, V. url  doi
openurl 
  Title Patterns of wild carnivore attacks on humans in urban areas Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages  
  Keywords Animals  
  Abstract Attacks by wild carnivores on humans represent an increasing problem in urban areas across North America and their frequency is expected to rise following urban expansion towards carnivore habitats. Here, we analyzed records of carnivore attacks on humans in urban areas of the U.S. and Canada between 1980 and 2016 to analyze the general patterns of the attacks, as well as describe the landscape structure and, for those attacks occurring at night, the light conditions at the site of the attacks. We found that several behavioral and landscape-related factors were recurrent elements in the attacks recorded. The species for which the attack locations were available (coyote and black bear) attacked in areas with different conditions of landscape structure and artificial light. Specifically, black bears attacked more frequently in areas with abundant and aggregated vegetation cover and scarce buildings and roads, while coyotes attacked in a broader range of landscape conditions. At night, black bears attacked in generally darker areas than coyotes. By providing a comprehensive perspective of the phenomenon, this study will improve our understanding of how effective strategies aimed at reducing the frequency of risky encounters in urban areas should be developed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: