toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S., Ulla, A. url  openurl
  Title Light Pollution in the Galician Atlantic Islands Maritime-Terrestrial National Park 2018 Report Type Report
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Conservation; Spain; Galicia; Europe; national park  
  Abstract The Galician Atlantic Islands Maritime-Terrestrial National Park (PNMTIAG), with the exception of the island of Cortegada, still has night skies of acceptable quality. However, the PNMTIAG islands are under strong photic pressures, both internal and external, that hinder the preservation of the basic features of the natural night, and call for an immediate action of all concerned stakeholders  
  Address  
  Corporate Author Thesis  
  Publisher USC Tragsa Place of Publication Editor  
  Language Galician Summary Language (down) Galician Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2187  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author Bará, S.; Escofet, J. url  doi
openurl 
  Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans  
  Volume 205 Issue Pages 267-277  
  Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry  
  Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.  
  Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2163  
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Kurumatani, N. url  doi
openurl 
  Title Bedroom Light Exposure at Night and the Incidence of Depressive Symptoms: A Longitudinal Study of the HEIJO-KYO Cohort Type Journal Article
  Year 2018 Publication American Journal of Epidemiology Abbreviated Journal Am J Epidemiol  
  Volume 187 Issue 3 Pages 427-434  
  Keywords Human Health; Mental Health; indoor light; geriatrics; Sleep; Sleep Disorders  
  Abstract Previous studies have indicated that minimal exposure to light at night (LAN) increases depression risk, even at 5 lux, in nocturnal and diurnal mammals. Although such low-level LAN may affect human circadian physiology, the association between exposure to LAN and depressive symptoms remains uncertain. In the present study, bedroom light intensity was measured objectively, and depressive symptoms were assessed, during 2010-2014 in Nara, Japan. Of 863 participants (mean age = 71.5 years) who did not have depressive symptoms at baseline, 73 participants reported development of depressive symptoms during follow-up (median, 24 months). Compared with the “dark” group (average of <5 lux; n = 710), the LAN group (average of >/=5 lux; n = 153) exhibited a significantly higher depression risk (hazard ratio = 1.89; 95% CI: 1.13, 3.14), according to a Cox proportional hazards model adjusting for age, sex, body mass index, and economic status. Further, the significance remained in a multivariable model adjusting for hypertension, diabetes, and sleep parameters (hazard ratio = 1.72; 95% CI: 1.03, 2.89). Sensitivity analyses using bedroom light data with a cutoff value of >/=10 lux suggested consistent results. In conclusion, these results indicated that exposure to LAN in home settings was independently associated with subsequent depression risk in an elderly general population.  
  Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara 634-8521, Japan; e-mail: obayashi(at)naramed-u.ac.jp  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9262 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28992236 Approved no  
  Call Number IDA @ john @ Serial 1815  
Permanent link to this record
 

 
Author Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. url  doi
openurl 
  Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 210 Issue Pages 91-100  
  Keywords  
  Abstract Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.  
  Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevierier Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: