|   | 
Details
   web
Records
Author Ernst, S.; Łabuz, M.; Środa, K.; Kotulski, L.
Title (up) Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal Sustainability
Volume 10 Issue 11 Pages 3850
Keywords Lighting
Abstract The efficiency and affordability of modern street lighting equipment are improving quickly, but systems used to manage and design lighting installations seem to lag behind. One of their problems is the lack of consistent methods to integrate all relevant data. Tools used to manage lighting infrastructure are not aware of the geographic characteristics of the lit areas, and photometric calculation software requires a lot of manual editing by the designer, who needs to assess the characteristics of roads, define the segments, and assign the lighting classes according to standards. In this paper, we propose a graph-based method to integrate geospatial data from various sources to support the process of data preparation for photometric calculations. The method uses graph transformations to define segments and assign lighting classes. A prototype system was developed to conduct experiments using real-world data. The proposed approach is compared to results obtained by professional designers in a case study; the method was also applied to several European cities to assess its efficiency. The obtained results are much more fine-grained than those yielded by the traditional approach; as a result, the lighting is more adequate, especially when used in conjunction with automated optimisation tools.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2051
Permanent link to this record
 

 
Author Wilson IV, J.; Reid, K.J.; Braun, R.I.; Abbott, S.M.; Zee, P.C.
Title (up) Habitual Light Exposure Relative to Circadian Timing in Delayed Sleep-Wake Phase Disorder Type Journal Article
Year 2018 Publication Sleep Abbreviated Journal
Volume in press Issue Pages
Keywords Human Health
Abstract Study Objectives

To compare melatonin timing, a well validated marker for endogenous circadian phase, and habitual light exposure patterns in adults with delayed sleep-wake phase disorder (DSWPD) and intermediate chronotype controls.

Methods

12 individuals with DSWPD (5 females, mean age 31.1) and 12 age matched controls (6 females, mean age 33.6) underwent a minimum of seven days of light and activity monitoring followed by an inpatient hospital stay, where blood was taken to assess melatonin timing (calculated as dim light melatonin onset – DLMO). Habitual light exposure patterns were then compared to a human phase response curve (PRC) to light.

Results

Relative to clock time, individuals with DSWPD had a later light exposure pattern compared to controls, but their light exposure pattern was earlier relative to DLMO. According to the human phase response curve (PRC) to light, individuals with DSWPD had less daily advancing light exposure compared to controls. The primary difference was seen in the late portion of the advancing window, in which individuals with DSWPD were exposed to fewer pulses of light of equivalent duration and intensity compared to controls.

Conclusions

Diminished advancing light exposure may play a role in the development and perpetuation of delayed sleep-wake timing in individuals with DSWPD. Enhancing light exposure during the later portion of the advancing window represents an innovative and complementary strategy that has the potential to improve the effectiveness of bright light therapy in DSWPD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1990
Permanent link to this record
 

 
Author Wittenbrink, N.; Ananthasubramaniam, B.; Munch, M.; Koller, B.; Maier, B.; Weschke, C.; Bes, F.; de Zeeuw, J.; Nowozin, C.; Wahnschaffe, A.; Wisniewski, S.; Zaleska, M.; Bartok, O.; Ashwal-Fluss, R.; Lammert, H.; Herzel, H.; Hummel, M.; Kadener, S.; Kunz, D.; Kramer, A.
Title (up) High-accuracy determination of internal circadian time from a single blood sample Type Journal Article
Year 2018 Publication The Journal of Clinical Investigation Abbreviated Journal J Clin Invest
Volume 128 Issue 9 Pages 3826-3839
Keywords Human Health
Abstract BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium fur Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.
Address Charite Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9738 ISBN Medium
Area Expedition Conference
Notes PMID:29953415; PMCID:PMC6118629 Approved no
Call Number GFZ @ kyba @ Serial 2194
Permanent link to this record
 

 
Author Netzel, H.; Netzel, P.
Title (up) High-resolution map of light pollution Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 221 Issue Pages 300-308
Keywords Skyglow
Abstract In 1976 Berry created a very simple model describing artificial night sky brightness due to light emitted by cities. He used several assumptions and simplifications, due to which, map calculated with this model does not properly describes the night sky brightness. Especially, this is the case for highly urbanized areas. We used Berry’s idea, but we changed some assumptions and used very different input data. As in Berry’s approach, we focused on total sky brightness and did not analyze spectral properties of artificial light emission. Resultant map has a resolution of 100 meters, and so far it is the most detailed map of night sky brightness. Moreover we included the shadowing effect, which is very important on mountainous areas. Map is calculated for Poland and for several other places in Europe. We also describe the comparison between calculated values and measurements for different areas in Europe. Also we present comparison between our approach and the new world atlas of artificial night sky brightness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1937
Permanent link to this record
 

 
Author Weisbuch, C.
Title (up) Historical perspective on the physics of artificial lighting Type Journal Article
Year 2018 Publication Comptes Rendus Physique Abbreviated Journal Comptes Rendus Physique
Volume 19 Issue 3 Pages 89-112
Keywords History; Lighting
Abstract We describe the evolution of lighting technologies used throughout the ages, and how the need for improvements was such that any new technology giving better and cheaper lighting was immediately implemented. Thus, every revolution in energy sources – gas, petrol electricity – was first put to large-scale use in lighting. We describe in some detail several “ancient” techniques of scientific interest, along with their physical limitations. Electroluminescence – the phenomenon by which LEDs directly convert electricity into light – was long thought to only be of use for indicators or flat panel displays supposed to replace the bulky cathode-ray tubes. The more recent uses of LEDs were mainly for street traffic lights, car indicators, small phone displays, followed by backlighting of TV screens. LED lamps for general lighting only emerged recently as the dominant application of LEDs thanks to dramatic decrease in cost, and continuous improvements of color quality and energy conversion efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1840
Permanent link to this record