|   | 
Details
   web
Records
Author Stafstrom, J.A.; Hebets, E.A.
Title (up) Male attraction to female airborne cues by the net-casting spider, Deinopis spinosa Type Journal Article
Year 2018 Publication Behavioural Processes Abbreviated Journal Behav Processes
Volume 159 Issue Pages 23-30
Keywords Animals
Abstract For many animals, finding a mate can be a difficult task. For males, it often involves actively searching for conspecific females, sometimes over great distances. This mate-searching can be aided through chemical or visual signals or cues produced by sexually receptive females. Here, we investigate the roles of olfaction and vision in mate-searching in a strictly nocturnal net-casting spider, Deinopis spinosa. First, we used an olfactometer assay to determine if mature male D. spinosa respond to conspecific airborne cues. We found that mature males, but not mature females, were attracted to airborne cues of mature female conspecifics. We next investigated the relative importance of olfaction and vision in male mate-searching. While manipulating airflow and light levels in screened enclosures in the laboratory, we tested freely moving mature males for mate-searching success. We found no effect of our airflow treatment on mate-searching success. Light levels, however, affected mate-searching in an unexpected way – males were more likely to locate females in complete darkness when compared to dim-light conditions. Our results suggest that visual cues are not necessary for successful male mate-searching in D. spinosa, but that the visual environment can nonetheless influence male behavior. In summary, we provide evidence suggesting that airborne cues, but not visual cues, are important in D. spinosa male mate-searching efforts, though the source of these chemical airborne cues remains unknown.
Address University of Nebraska – Lincoln, School of Biological Sciences, NE, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes PMID:30562562 Approved no
Call Number GFZ @ kyba @ Serial 2152
Permanent link to this record
 

 
Author Xu, Y.; Knudby, A.; Côté-Lussier, C.
Title (up) Mapping ambient light at night using field observations and high-resolution remote sensing imagery for studies of urban environments Type Journal Article
Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment
Volume 145 Issue Pages 104-114
Keywords Remote Sensing
Abstract Artificial lighting allows for a variety of activities to take place in the absence of sunlight, but also has an increasingly recognized range of negative social and health-related effects. For studies of urban ambient light at night (ALN), objective and standardized data on the amount of ALN experienced by people is often unavailable at the necessary intra-urban spatial scale. In this paper, we outline options for producing such data through (1) field observations acquired with a luminance meter mounted on a vehicle, (2) a 1-m resolution image mosaic produced from a dedicated aerial survey, and (3) a 50-m resolution image taken from the International Space Station. We produce two remote sensing-derived maps of ALN for a large urban area in Canada, and compare their spatial detail to the World Atlas of Artificial Night Sky Brightness, a publicly available alternative data source. Convergent validity with field observations suggests that both mapping approaches can be used to quantify the amount of light humans are exposed to at night, at different locations across a large urban area, and may thus aid in further studying the varied effects of artificial nighttime lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1998
Permanent link to this record
 

 
Author Geronimo, R.; Franklin, E.; Brainard, R.; Elvidge, C.; Santos, M.; Venegas, R.; Mora, C.
Title (up) Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 10 Pages 1604
Keywords Remote Sensing
Abstract Fisheries surveys over broad spatial areas are crucial in defining and delineating appropriate fisheries management areas. Yet accurate mapping and tracking of fishing activities remain largely restricted to developed countries with sufficient resources to use automated identification systems and vessel monitoring systems. For many countries, the spatial extent and boundaries of fishing grounds are not completely known. We used satellite images at night to detect fishing grounds in the Philippines for fishing gears that use powerful lights to attract coastal pelagic fishes. We used nightly boat detection data, extracted by U.S. NOAA from the Visible Infrared Imaging Radiometer Suite (VIIRS), for the Philippines from 2012 to 2016, covering 1713 nights, to examine spatio-temporal patterns of fishing activities in the country. Using density-based clustering, we identified 134 core fishing areas (CFAs) ranging in size from 6 to 23,215 km2 within the Philippines’ contiguous maritime zone. The CFAs had different seasonal patterns and range of intensities in total light output, possibly reflecting differences in multi-gear and multi-species signatures of fishing activities in each fishing ground. Using maximum entropy modeling, we identified bathymetry and chlorophyll as the main environmental predictors of spatial occurrence of these CFAs when analyzed together, highlighting the multi-gear nature of the CFAs. Applications of the model to specific CFAs identified different environmental drivers of fishing distribution, coinciding with known oceanographic associations for a CFA’s dominant target species. This case study highlights nighttime satellite images as a useful source of spatial fishing effort information for fisheries, especially in Southeast Asia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2033
Permanent link to this record
 

 
Author Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J.
Title (up) Mapping nighttime PM 2.5 from VIIRS DNB using a linear mixed-effect model Type Journal Article
Year 2018 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment
Volume 178 Issue Pages 214-222
Keywords Remote Sensing
Abstract Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ±± 0.12, 0.83 ±0.10±0.10, 0.87 ±± 0.09, 0.83 ±± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1814
Permanent link to this record
 

 
Author Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F.
Title (up) Mapping population density in China between 1990 and 2010 using remote sensing Type Journal Article
Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 210 Issue Pages 269-281
Keywords Remote Sensing
Abstract Knowledge of the spatial distribution of populations at finer spatial scales is of significant value and fundamental to many applications such as environmental change, urbanization, regional planning, public health, and disaster management. However, detailed assessment of the population distribution data of countries that have large populations (such as China) and significant variation in distribution requires improved data processing methods and spatialization models. This paper described the construction of a novel population spatialization method by combining land use/cover data and night-light data. Based on the analysis of data characteristics, the method used partial correlation analysis and geographically weighted regression to improve the distribution accuracy and reduce regional errors. China's census data for the years 1990, 2000, and 2010 were assessed. The results showed that the method was better at population spatialization than methods that use only night-light data or land use/cover data and global linear regression. Evaluation of overall accuracies revealed that the coefficient of correlation R-square was >0.90 and increased by >0.13 in the years 1990, 2000, and 2010. Moreover, the local R-square of over 90% of the samples (counties) was higher than the adjusted R-square of the general linear regression model. Furthermore, the gridded population density datasets obtained by this method can be used to analyse spatial-temporal patterns of population density and provide population distribution information with increased accuracy and precision compared to conventional models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2480
Permanent link to this record