toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borck, P.C.; Batista, T.M.; Vettorazzi, J.F.; Soares, G.M.; Lubaczeuski, C.; Guan, D.; Boschero, A.C.; Vieira, E.; Lazar, M.A.; Carneiro, E.M. url  doi
openurl 
  Title (up) Nighttime light exposure enhances Rev-erbalpha-targeting microRNAs and contributes to hepatic steatosis Type Journal Article
  Year 2018 Publication Metabolism: Clinical and Experimental Abbreviated Journal Metabolism  
  Volume 85 Issue Pages 250-258  
  Keywords Animals  
  Abstract OBJECTIVE: The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS: We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbalpha and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbalpha-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbalpha expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbalpha-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION: Thus, altered miRNA profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.  
  Address Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-0495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29751019 Approved no  
  Call Number GFZ @ kyba @ Serial 1891  
Permanent link to this record
 

 
Author Spoelstra, K.; Ramakers, J.J.C.; van Dis, N.E.; Visser, M.E. url  doi
openurl 
  Title (up) No effect of artificial light of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice experiment Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 506-510  
  Keywords Animals  
  Abstract Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29808964 Approved no  
  Call Number GFZ @ kyba @ Serial 1927  
Permanent link to this record
 

 
Author Flores, D.E.F.L.; Oda, G.A. url  doi
openurl 
  Title (up) Novel Light/Dark Regimens with Minimum Light Promote Circadian Disruption: Simulations with a Model Oscillator Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.  
  Address Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30595077 Approved no  
  Call Number GFZ @ kyba @ Serial 2146  
Permanent link to this record
 

 
Author Zhao, X.; Yu, B.; Liu, Y.; Yao, S.; Lian, T.; Chen, L.; Yang, C.; Chen, Z.; Wu, J. url  doi
openurl 
  Title (up) NPP-VIIRS DNB Daily Data in Natural Disaster Assessment: Evidence from Selected Case Studies Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 10 Pages 1526  
  Keywords Remote Sensing  
  Abstract Whereas monthly and annual nighttime light (NTL) composite datasets are being increasingly used to estimate socioeconomic status, use of the National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) Day/Night Band (DNB) daily data has been limited for detecting and assessing the impact of short-term disastrous events. This study explores the application of daily NPP-VIIRS DNB data in assessing the impact of three types of natural disasters: earthquakes, floods, and storms. Daily DNB images one month prior to and 10 days after a disastrous event were collected and a Percent of Normal Light (PNL) image was produced as the ratio of the mean DNB radiance of the pre- and post-disaster images. Areas with a PNL value lower than one were considered as being affected by the event. The results were compared with the damaged proxy map and the flood proxy map generated using synthetic aperture radar data as well as the reported power outage rates. Our analyses show that overall NPP-VIIRS DNB daily data are useful for detecting damages and power outages caused by earthquake, storm, and flood events. Cloud coverage was identified as a major limitation in using the DNB daily data; rescue activities, traffic, and socioeconomic status of the areas also affect the use of DNB daily data in assessing the impact of natural disasters. Our findings offer new insight into the use of the daily DNB data and provide a practical guide for researchers and practitioners who may consider using such data in different situations or regions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2017  
Permanent link to this record
 

 
Author Solano-Lamphar, H.A.; Kocifaj, M. url  doi
openurl 
  Title (up) Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 209 Issue Pages 484-494  
  Keywords Plants; Skyglow  
  Abstract The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture.  
  Address ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29316469 Approved no  
  Call Number GFZ @ kyba @ Serial 1854  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: