toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hu, Z.; Hu, H.; Huang, Y. url  doi
openurl 
  Title (up) Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data Type Journal Article
  Year 2018 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 239 Issue Pages 30-42  
  Keywords Animals; Remote Sensing  
  Abstract Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the “Florida Statewide Nesting Beach Survey program”. We used the new generation of satellite sensor “Visible Infrared Imaging Radiometer Suite (VIIRS)” (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45 degrees of elevation (>1.14x10(-11) Wm(-2)sr(-1)). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.  
  Address Department of Computing Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA. Electronic address: Lucy.Huang@tamucc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29649758 Approved no  
  Call Number GFZ @ kyba @ Serial 1855  
Permanent link to this record
 

 
Author Gaydecki, P. url  doi
openurl 
  Title (up) Automated moth flight analysis in the vicinity of artificial light Type Journal Article
  Year 2018 Publication Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res  
  Volume 109 Issue 1 Pages 127-140  
  Keywords Instrumentation; Animals  
  Abstract Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.  
  Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-4853 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29745349 Approved no  
  Call Number GFZ @ kyba @ Serial 1895  
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Kurumatani, N. url  doi
openurl 
  Title (up) Bedroom Light Exposure at Night and the Incidence of Depressive Symptoms: A Longitudinal Study of the HEIJO-KYO Cohort Type Journal Article
  Year 2018 Publication American Journal of Epidemiology Abbreviated Journal Am J Epidemiol  
  Volume 187 Issue 3 Pages 427-434  
  Keywords Human Health; Mental Health; indoor light; geriatrics; Sleep; Sleep Disorders  
  Abstract Previous studies have indicated that minimal exposure to light at night (LAN) increases depression risk, even at 5 lux, in nocturnal and diurnal mammals. Although such low-level LAN may affect human circadian physiology, the association between exposure to LAN and depressive symptoms remains uncertain. In the present study, bedroom light intensity was measured objectively, and depressive symptoms were assessed, during 2010-2014 in Nara, Japan. Of 863 participants (mean age = 71.5 years) who did not have depressive symptoms at baseline, 73 participants reported development of depressive symptoms during follow-up (median, 24 months). Compared with the “dark” group (average of <5 lux; n = 710), the LAN group (average of >/=5 lux; n = 153) exhibited a significantly higher depression risk (hazard ratio = 1.89; 95% CI: 1.13, 3.14), according to a Cox proportional hazards model adjusting for age, sex, body mass index, and economic status. Further, the significance remained in a multivariable model adjusting for hypertension, diabetes, and sleep parameters (hazard ratio = 1.72; 95% CI: 1.03, 2.89). Sensitivity analyses using bedroom light data with a cutoff value of >/=10 lux suggested consistent results. In conclusion, these results indicated that exposure to LAN in home settings was independently associated with subsequent depression risk in an elderly general population.  
  Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara 634-8521, Japan; e-mail: obayashi(at)naramed-u.ac.jp  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9262 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28992236 Approved no  
  Call Number IDA @ john @ Serial 1815  
Permanent link to this record
 

 
Author Hansen, M.J.; Cocherell, D.E.; Cooke, S.J.; Patrick, P.H.; Sills, M.; Fangue, N.A. url  doi
openurl 
  Title (up) Behavioural guidance of Chinook salmon smolts: the variable effects of LED spectral wavelength and strobing frequency Type Journal Article
  Year 2018 Publication Conservation Physiology Abbreviated Journal  
  Volume 6 Issue 1 Pages  
  Keywords Animals  
  Abstract Exploiting species-specific behavioural responses of fish to light is an increasingly promising technique to reduce the entrainment or impingement of fish that results from the diversion of water for human activities, such as hydropower or irrigation. Whilst there is some evidence that white light can be an effective deterrent for Chinook salmon smolts, the results have been mixed. There is a need to test the response of fish to different spectra and strobing frequencies to improve deterrent performance. We tested the movement and spatial response of groups of four fish to combinations of light-emitting diode (LED) spectra (red, green, blue and white light) during the day and night, and strobing frequencies (constant and 2Hz) during the day, using innovative LED technology intended as a behavioural guidance device for use in the field. Whilst strobing did not alter fish behaviour when compared to constant light, the red light had a repulsive effect during the day, with fish under this treatment spending significantly less time in the half of the arena closest to the behavioural guidance device compared to both the control and blue light. Importantly, this effect disappeared at night, where there were no differences in movement and space use found between spectra. There was some evidence of a potential attractive response of fish to the blue and green light during the day. Under these light treatments, fish spent the highest amount of time closest to the behavioural guidance device. Further tests manipulating the light intensity in the different spectra are needed to verify the mechanistic determinants of the observed behaviours. Results are discussed in reference to the known spectral sensitivities of the cone and rod photopigments in these fish, and further experiments are suggested to better relate the work to mitigating the effects on fish of infrastructure used for hydropower and irrigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-1434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1947  
Permanent link to this record
 

 
Author Galadí-Enríquez, D. url  doi
openurl 
  Title (up) Beyond CCT: The spectral index system as a tool for the objective, quantitative characterization of lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 206 Issue Pages 399-408  
  Keywords Lighting  
  Abstract Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1835  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: