|
Records |
Links |
|
Author |
Spoelstra, K.; Verhagen, I.; Meijer, D.; Visser, M.E. |

|
|
Title  |
Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (Parus major) |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Proceedings. Biological Sciences |
Abbreviated Journal |
Proc Biol Sci |
|
|
Volume |
285 |
Issue |
1875 |
Pages |
|
|
|
Keywords |
Animals |
|
|
Abstract |
Artificial light at night has shown a dramatic increase over the last decades and continues to increase. Light at night can have strong effects on the behaviour and physiology of species, which includes changes in the daily timing of activity; a clear example is the advance in dawn song onset in songbirds by low levels of light at night. Although such effects are often referred to as changes in circadian timing, i.e. changes to the internal clock, two alternative mechanisms are possible. First, light at night can change the timing of clock controlled activity, without any change to the clock itself; e.g. by a change in the phase relation between the circadian clock and expression of activity. Second, changes in daily activity can be a direct response to light ('masking'), without any involvement of the circadian system. Here, we studied whether the advance in onset of activity by dim light at night in great tits (Parus major) is indeed attributable to a phase shift of the internal clock. We entrained birds to a normal light/dark (LD) cycle with bright light during daytime and darkness at night, and to a comparable (LDim) schedule with dim light at night. The dim light at night strongly advanced the onset of activity of the birds. After at least six days in LD or LDim, we kept birds in constant darkness (DD) by leaving off all lights so birds would revert to their endogenous, circadian system controlled timing of activity. We found that the timing of onset in DD was not dependent on whether the birds were kept at LD or LDim before the measurement. Thus, the advance of activity under light at night is caused by a direct effect of light rather than a phase shift of the internal clock. This demonstrates that birds are capable of changing their daily activity to low levels of light at night directly, without the need to alter their internal clock. |
|
|
Address |
Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0962-8452 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29593108 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1830 |
|
Permanent link to this record |
|
|
|
|
Author |
Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S. |

|
|
Title  |
Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Marine Ecology Progress Series |
Abbreviated Journal |
Mar. Ecol. Prog. Ser. |
|
|
Volume |
600 |
Issue |
|
Pages |
179-192 |
|
|
Keywords |
Animals |
|
|
Abstract |
After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0171-8630 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1967 |
|
Permanent link to this record |
|
|
|
|
Author |
Dimovski, A.M.; Robert, K.A. |

|
|
Title  |
Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
329 |
Issue |
8-9 |
Pages |
497-505 |
|
|
Keywords |
Animals; Lighting |
|
|
Abstract |
The focus of sustainable lighting tends to be on reduced CO2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m(2) ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m(2) ), and no lighting (irradiance from sky glow < 0.37 x 10(-3) W/m(2) ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. |
|
|
Address |
Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29722167 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1888 |
|
Permanent link to this record |
|
|
|
|
Author |
Zapata, M.J.; Sullivan, S.M.P.; Gray, S.M. |

|
|
Title  |
Artificial Lighting at Night in Estuaries—Implications from Individuals to Ecosystems |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Estuaries and Coasts |
Abbreviated Journal |
|
|
|
Volume |
In press |
Issue |
|
Pages |
|
|
|
Keywords |
Animals; Ecology |
|
|
Abstract |
Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial “lightscapes” are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual- to community- and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
NC @ ehyde3 @ |
Serial |
2116 |
|
Permanent link to this record |
|
|
|
|
Author |
Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M. |

|
|
Title  |
Artificial lighting triggers the presence of urban spiders and their webs on historical buildings |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Landscape and Urban Planning |
Abbreviated Journal |
Landscape and Urban Planning |
|
|
Volume |
180 |
Issue |
|
Pages |
187-194 |
|
|
Keywords |
Animals; Lighting |
|
|
Abstract |
Different spider species living in the urban environment spin their webs on building facades. Due to air pollution, web aggregations entrap dirt particles over time, assuming a brownish-greyish colouration and thus determining an aesthetic impact on buildings and street furniture. In Europe, the most common species causing such an aesthetic nuisance is Brigittea civica (Lucas) (Dictynidae). In spite of the socio-economical relevance of the problem, the ecological factors driving the proliferation of this species in the urban environment are poorly described and the effectiveness of potential cleaning activities has never been discussed in scientific literature. Over one year, we studied the environmental drivers of B. civica webs in the arcades of the historical down-town district of Turin (NW-Italy). We selected a number of sampling plots on arcade ceilings and we estimated the density of B. civica webs by means of digital image analysis. In parallel, we collected information on a number of potential explanatory variables driving the arcade colonization, namely artificial lighting at night, substrate temperature, distance from the main artificial light sources and distance from the river. Regression analysis showed that the coverage of spider webs increased significantly at plots with higher light intensity, with a major effect related to the presence of historical lampposts with incandescent lamps rather than halogen lamps. We also detected a seasonal variation in the web coverage, with significant higher values in summer. Stemming from our results, we are able to suggest good practices for the containment of this phenomenon. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0169-2046 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2002 |
|
Permanent link to this record |