toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McKenna, H.; van der Horst, G.T.J.; Reiss, I.; Martin, D. url  doi
openurl 
  Title (up) Clinical chronobiology: a timely consideration in critical care medicine Type Journal Article
  Year 2018 Publication Critical Care (London, England) Abbreviated Journal Crit Care  
  Volume 22 Issue 1 Pages 124  
  Keywords Human Health; Review  
  Abstract A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of “chronopathology”, when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of “chronofitness” as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients.  
  Address Critical Care Unit, Royal Free Hospital, Pond Street, London, NW3 2QG, UK. daniel.martin@ucl.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8535 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29747699 Approved no  
  Call Number GFZ @ kyba @ Serial 1897  
Permanent link to this record
 

 
Author Kelsey, E.C.; Felis, J.J.; Czapanskiy, M.; Pereksta, D.M.; Adams, J. url  doi
openurl 
  Title (up) Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 227 Issue Pages 229-247  
  Keywords Animals  
  Abstract Marine birds are vulnerable to collision with and displacement by offshore wind energy infrastructure (OWEI). Here we present the first assessment of marine bird vulnerability to potential OWEI in the California Current System portion of the U.S. Pacific Outer Continental Shelf (POCS). Using population size, demography, life history, flight heights, and avoidance behavior for 62 seabird and 19 marine water bird species that occur in the POCS, we present and apply equations to calculate Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability to OWEI for each species. Species with greatest Population vulnerability included those listed as species of concern (e.g., Least Tern [Sternula antillarum], Marbled Murrelet [Brachyramphus marmoratus], Pink-footed Shearwater [Puffinus creatopus]) and resident year-round species with small population sizes (e.g., Ashy Storm-Petrel [Oceanodroma homochroa], Brandt's Cormorant [Phalacrocorax penicillatus], and Brown Pelican [Pelecanus occidentalis]). Species groups with the greatest Collision Vulnerability included jaegers/skuas, pelicans, terns and gulls that spend significant amounts of time flying at rotor sweep zone height and don't show macro-avoidance behavior (avoidance of entire OWEI area). Species groups with the greatest Displacement Vulnerability show high macro-avoidance behavior and low habitat flexibility and included loons, grebes, sea ducks, and alcids. Using at-sea survey data from the southern POCS, we combined species-specific vulnerabilities described above with at-sea species densities to assess vulnerabilities spatially. Spatial vulnerability densities were greatest in areas with high species densities (e.g., near-shore areas) and locations where species with high vulnerability were found in abundance. Our vulnerability assessment helps understand and minimize potential impacts of OWEI infrastructure on marine birds in the POCS and could inform management decisions.  
  Address U.S. Geological Survey Western Ecological Research Center, Santa Cruz, CA 95062, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30195148 Approved no  
  Call Number GFZ @ kyba @ Serial 2122  
Permanent link to this record
 

 
Author Robertson, B.A., Horváth, G. url  doi
openurl 
  Title (up) Color polarization vision mediates the strength of an evolutionary trap Type Journal Article
  Year 2018 Publication Wiley Evolutionary Applications Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Animals  
  Abstract Evolutionary traps are scenarios in which animals are fooled by rapidly changing conditions into preferring poor-quality resources over those that better improve survival and reproductive success. The maladaptive attraction of aquatic insects to artificial sources of horizontally polarized light (e.g., glass buildings, asphalt roads) has become a first model system by which scientists can investigate the behavioral mechanisms that cause traps to occur. We employ this field-based system to experimentally investigate (a) in which portion(s) of the spectrum are polarizationally water-imitating reflectors attractive to nocturnal terrestrial and aquatics insects, and (b) which modern lamp types result in greater attraction in this typical kind of nocturnal polarized light pollution. We found that most aquatic taxa exhibited preferences for lamps based upon their color spectra, most having lowest preference for lamps emitting blue and red light. Yet, despite previously established preference for higher degrees of polarization of reflected light, most aquatic insect families were attracted to traps based upon their unpolarized spectrum. Chironomid midges, alone, showed a preference for the color of lamplight in both the horizontally polarized and unpolarized spectra indicating only this family has evolved to use light in this color range as a source of information to guide its nocturnal habitat selection. These results demonstrate that the color of artificial lighting can exacerbate or reduce its attractiveness to aquatic insects, but that the strength of attractiveness of nocturnal evolutionary traps, and so their demographic consequences, is primarily driven by unpolarized light pollution. This focuses management attention on limiting broad-spectrum light pollution, as well as its intentional deployment to attract insects back to natural habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2076  
Permanent link to this record
 

 
Author Donners, M.; van Grunsven, R.H.A.; Groenendijk, D.; van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E. url  doi
openurl 
  Title (up) Colors of attraction: Modeling insect flight to light behavior Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 434-440  
  Keywords Animals; ecology; Lighting  
  Abstract Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.  
  Address Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29944198 Approved no  
  Call Number GFZ @ kyba @ Serial 1944  
Permanent link to this record
 

 
Author Mortazavi, S.M.J. url  doi
openurl 
  Title (up) Comment on 'Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study' Type Journal Article
  Year 2018 Publication British Journal of Cancer Abbreviated Journal Br J Cancer  
  Volume 118 Issue 11 Pages 1536  
  Keywords Commentary  
  Abstract  
  Address Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran. S.M.Javad.Mortazavi@fccc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-0920 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29769746 Approved no  
  Call Number GFZ @ kyba @ Serial 1911  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: