|   | 
Details
   web
Records
Author Lu, H.; Zhang, M.; Sun, W.; Li, W.
Title Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012 Type (up) Journal Article
Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 7 Issue 2 Pages 52
Keywords Remote Sensing
Abstract Investigating the characteristics of urban expansion is helpful in managing the relationship between urbanization and the ecological and environmental issues related to sustainable development. The Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) collects visible and near-infrared light from the Earth’s surface at night without moonlight. It generates effective time series data for mapping the dynamics of urban expansion. As a major urban agglomeration in the world, the Yangtze River Delta Urban Agglomeration (YRDUA) is an important intersection zone of both the “Belt and Road Initiative” and the “Yangtze River Economic Belt” in China. Therefore, this paper analyses urban expansion characteristics of the YRDUA for 1993–2012 from urban extents extracted from the DMSP/OLS for 1993, 1997, 2002, 2007, and 2012. First, calibration procedures are applied to DMSP/OLS data, including intercalibration, intra-annual composition, and inter-annual series correction procedures. Spatial extents are then extracted from the corrected DMSP/OLS data, and a threshold is determined via the spatial comparison method. Finally, three models are used to explore urban expansion characteristics of the YRDUA from expansion rates, expansion spatial patterns, and expansion evaluations. The results show that the urban expansion of the YRDUA occurred at an increasing rate from 1993–2007 and then declined after 2007 with the onset of the global financial crisis. The Suxichang and Ningbo metropolitan circles were seriously affected by the financial crisis, while the Hefei metropolitan circle was not. The urban expansion of the YRDUA moved from the northeast to the southwest over the 20-year period. Urban expansion involved internal infilling over the first 15 years and then evolved into external sprawl and suburbanization after 2007.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1813
Permanent link to this record
 

 
Author Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J.
Title Mapping nighttime PM 2.5 from VIIRS DNB using a linear mixed-effect model Type (up) Journal Article
Year 2018 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment
Volume 178 Issue Pages 214-222
Keywords Remote Sensing
Abstract Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time (LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality. Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily PM2.5 with mean determination coefficient (R2) of 0.87 ±± 0.12, 0.83 ±0.10±0.10, 0.87 ±± 0.09, 0.83 ±± 0.10 in spring, summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1814
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Kurumatani, N.
Title Bedroom Light Exposure at Night and the Incidence of Depressive Symptoms: A Longitudinal Study of the HEIJO-KYO Cohort Type (up) Journal Article
Year 2018 Publication American Journal of Epidemiology Abbreviated Journal Am J Epidemiol
Volume 187 Issue 3 Pages 427-434
Keywords Human Health; Mental Health; indoor light; geriatrics; Sleep; Sleep Disorders
Abstract Previous studies have indicated that minimal exposure to light at night (LAN) increases depression risk, even at 5 lux, in nocturnal and diurnal mammals. Although such low-level LAN may affect human circadian physiology, the association between exposure to LAN and depressive symptoms remains uncertain. In the present study, bedroom light intensity was measured objectively, and depressive symptoms were assessed, during 2010-2014 in Nara, Japan. Of 863 participants (mean age = 71.5 years) who did not have depressive symptoms at baseline, 73 participants reported development of depressive symptoms during follow-up (median, 24 months). Compared with the “dark” group (average of <5 lux; n = 710), the LAN group (average of >/=5 lux; n = 153) exhibited a significantly higher depression risk (hazard ratio = 1.89; 95% CI: 1.13, 3.14), according to a Cox proportional hazards model adjusting for age, sex, body mass index, and economic status. Further, the significance remained in a multivariable model adjusting for hypertension, diabetes, and sleep parameters (hazard ratio = 1.72; 95% CI: 1.03, 2.89). Sensitivity analyses using bedroom light data with a cutoff value of >/=10 lux suggested consistent results. In conclusion, these results indicated that exposure to LAN in home settings was independently associated with subsequent depression risk in an elderly general population.
Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara 634-8521, Japan; e-mail: obayashi(at)naramed-u.ac.jp
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9262 ISBN Medium
Area Expedition Conference
Notes PMID:28992236 Approved no
Call Number IDA @ john @ Serial 1815
Permanent link to this record
 

 
Author Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E.
Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type (up) Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 210 Issue Pages 91-100
Keywords
Abstract Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevierier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1816
Permanent link to this record
 

 
Author Ouyang, J.Q.; Davies, S.; Dominoni, D.
Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type (up) Journal Article
Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 221 Issue Pt 6 Pages
Keywords Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology
Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:29545373 Approved no
Call Number IDA @ john @ Serial 1817
Permanent link to this record