toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Spoelstra, K.; Verhagen, I.; Meijer, D.; Visser, M.E. url  doi
openurl 
  Title Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (Parus major) Type (up) Journal Article
  Year 2018 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 285 Issue 1875 Pages  
  Keywords Animals  
  Abstract Artificial light at night has shown a dramatic increase over the last decades and continues to increase. Light at night can have strong effects on the behaviour and physiology of species, which includes changes in the daily timing of activity; a clear example is the advance in dawn song onset in songbirds by low levels of light at night. Although such effects are often referred to as changes in circadian timing, i.e. changes to the internal clock, two alternative mechanisms are possible. First, light at night can change the timing of clock controlled activity, without any change to the clock itself; e.g. by a change in the phase relation between the circadian clock and expression of activity. Second, changes in daily activity can be a direct response to light ('masking'), without any involvement of the circadian system. Here, we studied whether the advance in onset of activity by dim light at night in great tits (Parus major) is indeed attributable to a phase shift of the internal clock. We entrained birds to a normal light/dark (LD) cycle with bright light during daytime and darkness at night, and to a comparable (LDim) schedule with dim light at night. The dim light at night strongly advanced the onset of activity of the birds. After at least six days in LD or LDim, we kept birds in constant darkness (DD) by leaving off all lights so birds would revert to their endogenous, circadian system controlled timing of activity. We found that the timing of onset in DD was not dependent on whether the birds were kept at LD or LDim before the measurement. Thus, the advance of activity under light at night is caused by a direct effect of light rather than a phase shift of the internal clock. This demonstrates that birds are capable of changing their daily activity to low levels of light at night directly, without the need to alter their internal clock.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29593108 Approved no  
  Call Number GFZ @ kyba @ Serial 1830  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Mohar, A.; Pintar, G; Stare, J url  doi
openurl 
  Title Reducing the environmental footprint of church lighting: matching façade shape and lowering luminance with the EcoSky LED Type (up) Journal Article
  Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 20 Issue 1 Pages 1-10  
  Keywords Energy; Lighting; Remote Sensing  
  Abstract The lighting of the Church of the Three Kings in Logatec, Slovenia was replaced in 2014. The power of the installation was reduced 96% from 1.6 kW to 58 W, and spill light from the site was effectively eliminated. As a result, the church is no longer visible in nighttime satellite images of the area, indicating a reduction of waste light from the site of at least a factor of 30. This article discusses the concept of sustainability with regards to cultural heritage lighting, within the context of this example.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1831  
Permanent link to this record
 

 
Author Borges, R.M. openurl 
  Title Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services Type (up) Journal Article
  Year 2018 Publication Yale Journal of Biology and Medicine Abbreviated Journal  
  Volume 91 Issue 1 Pages 33-42  
  Keywords Plants; Animals  
  Abstract The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1832  
Permanent link to this record
 

 
Author Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G. url  doi
openurl 
  Title Emerging threat of the 21(st) century lightscape to global biodiversity Type (up) Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 24 Issue 6 Pages 2315-2324  
  Keywords Animals; Ecology; Remote Sensing  
  Abstract Over the last century the temporal and spatial distribution of light on Earth has been drastically altered by human activity. Despite mounting evidence of detrimental effects of light pollution on organisms and their trophic interactions, the extent to which light pollution threatens biodiversity on a global scale remains unclear. We assessed the spatial extent and magnitude of light encroachment by measuring change in the extent of light using satellite imagery from 1992 to 2012 relative to species richness for terrestrial and freshwater mammals, birds, reptiles, and amphibians. The encroachment of light into previously dark areas was consistently high, often doubling, in areas of high species richness for all four groups. This pattern persisted for nocturnal groups (e.g., bats, owls, and geckos) and species considered vulnerable to extinction. Areas with high species richness and large increases in light extent were clustered within newly industrialized regions where expansion of light is likely to continue unabated unless we act to conserve remaining darkness. Implementing change at a global scale requires global public, and therefore scientific, support. Here, we offer substantial evidence that light extent is increasing where biodiversity is high, representing an emerging threat to global biodiversity requiring immediate attention. This article is protected by copyright. All rights reserved.  
  Address Center for Ecology and Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29575356 Approved no  
  Call Number GFZ @ kyba @ Serial 1833  
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Holmberg, R.; Dann, P.; Chiaradia, A. url  doi
openurl 
  Title Penguin colony attendance under artificial lights for ecotourism Type (up) Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 457-464  
  Keywords Animals  
  Abstract Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat.  
  Address Research Department, Phillip Island Nature Parks, Cowes, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29603671 Approved no  
  Call Number GFZ @ kyba @ Serial 1834  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: