toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Emmer, K.M.; Russart, K.L.G.; Walker, W.H.; Nelson, R.J.; DeVries, A.C. url  doi
openurl 
  Title Effects of light at night on laboratory animals and research outcomes Type Journal Article
  Year 2018 Publication Behavioral Neuroscience Abbreviated Journal Behav Neurosci  
  Volume (down) 132 Issue 4 Pages 302-314  
  Keywords Animals  
  Abstract Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record  
  Address Rockefeller Neuroscience Institute, West Virginia University  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29952608 Approved no  
  Call Number GFZ @ kyba @ Serial 1957  
Permanent link to this record
 

 
Author Hiltunen, A. P., Kumpula, T., &Tykkyläinen, M. url  openurl
  Title Yövalaistuksen ja valopäästöjen alueellinen jakautuminen Type Journal Article
  Year 2018 Publication Geoinformatiikka Yhteiskunnassa Abbreviated Journal  
  Volume (down) 130 Issue 4 Pages  
  Keywords Remote Sensing  
  Abstract Remotely-sensed night-time lights (NTL) reveal the occurrence of human development while excessive light emissions cause ecological impacts and may create human health hazards. The aim of this research is to find out the factors affecting the quantity of remotely-sensed NTLs in Finland at 2015. We also aim to unveil how much NTLs have changed in Finland from 1993 to 2012 and what is the share of NTLs for different land use types in Finland in 2015. Answers to these questions are achieved with satellite radiance data and data on spatial structure, multiple linear regression (MLR), and change-detection methods. National and regional MLR models were produced to explain NTL and to compare the suitability of this modelling approach in different regions. Radiance is explained by population density, industrial building density, and lit roads density. Surprisingly, the brightest areas in Finland seem to be in Närpiö, a rural area with low population density but where greenhouse farming is common. Based on change-detection, new light sources have emerged because of the expansion of mining and tourism industries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Finnish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2354  
Permanent link to this record
 

 
Author Wittenbrink, N.; Ananthasubramaniam, B.; Munch, M.; Koller, B.; Maier, B.; Weschke, C.; Bes, F.; de Zeeuw, J.; Nowozin, C.; Wahnschaffe, A.; Wisniewski, S.; Zaleska, M.; Bartok, O.; Ashwal-Fluss, R.; Lammert, H.; Herzel, H.; Hummel, M.; Kadener, S.; Kunz, D.; Kramer, A. url  doi
openurl 
  Title High-accuracy determination of internal circadian time from a single blood sample Type Journal Article
  Year 2018 Publication The Journal of Clinical Investigation Abbreviated Journal J Clin Invest  
  Volume (down) 128 Issue 9 Pages 3826-3839  
  Keywords Human Health  
  Abstract BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium fur Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.  
  Address Charite Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9738 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29953415; PMCID:PMC6118629 Approved no  
  Call Number GFZ @ kyba @ Serial 2194  
Permanent link to this record
 

 
Author Manfrin, A.; Lehmann, D.; van Grunsven, R.H.A.; Larsen, S.; Syväranta, J.; Wharton, G.; Voigt, C.C.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem Type Journal Article
  Year 2018 Publication Oikos Abbreviated Journal Oikos  
  Volume (down) 127 Issue 7 Pages 960-969  
  Keywords Ecology; Animals  
  Abstract Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic-derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN-illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in summer (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in summer. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species- and season-specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic-terrestrial ecosystem linkages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1811  
Permanent link to this record
 

 
Author Garcia-Saenz, A.; Sánchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Martín Sánchez, V.; Guevara, M.; Capelo, R.; Tardón, A.; Peiró-Perez, R.; Jiménez-Moleón, J.J.; Roca-Barceló, A.; Pérez-Gómez, B.; Dierssen-Sotos, T.; Fernández-Villa, T.; Moreno-Iribas, C.; Moreno, V.; García-Pérez, J.; Castaño-Vinyals, G.; Pollán, M.; Aubé, M.; Kogevinas, M. url  doi
openurl 
  Title Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) Type Journal Article
  Year 2018 Publication Environmental Health Perspectives Abbreviated Journal  
  Volume (down) 126 Issue 04 Pages  
  Keywords Human Health; Remote Sensing  
  Abstract Background: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers.

Objectives: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase–control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night.

Methods: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008–2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012–2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject.

Results: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51).

Conclusion: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: