Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Arendt, J., & Middleton, B. (2018). Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S). Gen Comp Endocrinol, 258, 250–258.
Abstract: Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Keywords: Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
|
Arnott, J. T. (1982). Growth Response of White and Englemann Spruce Seedlings to Extended Photoperiod Using Three Light Intensities.
Abstract: Four seedlots of white spruce (Picea glauca (Moench) Voss) and three of Engelmann spruce (Picea engelmannii Parry), covering a range of 10 degrees of latitude and a range of altitudes, were sown in BC/ CFS Styroblocks and grown in a heated greenhouse and an unheated shadehouse, using incandescent light to provide a 19-h photoperiod. Four intensities of lighting were used: 0, 100,200, and 400 Ix. A second experiment with the same seedlots was conducted in growth rooms that were programmed to evaluate the effect of low night temperature on seedling shoot growth when the photoperiod was extended to 19 h, using a light intensity of 200 Ix.
Shoot length of white and Engelmann spruce seedlings grown under an extended daylength of 100 Ix were significantly taller than the control (0 Ix). There were no significant differences in shoot length or weight among the three intensities of light used to extend the photoperiod for all seedlots except the southern latitude-low elevation population of Engelmann spruce. The more northern populations of white spruce and the high altitude populations of Engelmann spruce did not require light intensities higher than 100 Ix to maintain apical growth. Low night temperature (7°C) did produce significantly smaller seedlings than the warm night (1SoC) regime. However, terminal resting buds of seedlings grown under the cool night regime did not form any sooner than on those seedlings grown under warm nights. Keywords: Plants
|
Asanuma, I., Hasegawa, D., Yamaguchi, T., Park, J. G., & Mackin, K. J. (2018). Island Activities Detected by VIIRS and Validation with AIS. Ars, 07(03), 171–182.
Abstract: A possibility to monitor the reclamation activities by remote sensing was discussed. The lights observed in the night time by Day Night Band (DNB) of Visible Infrared Imaging Radiometer Suite (VIIRS), ocean color observed in the day time by visible bands of VIIRS were the tools to monitor the surface activities, and the Automated Information System (AIS) was used to verify the types and number of vessels associated with the reclamation activities. The lights as the radiance from the surface were monitored by the object based analysis, where the object was defined as a radius of 5 km from the center of the Mischief Reef in the South China Sea (SCS). The time history of surface lights exhibited the increase of the radiance from January to May 2015 and the radiance was kept in the certain level to December 2016 with some variations. The ocean color, chlorophyll-a concentration as a proxy of sediments, showed an increase from February to June 2015 and returned to a low concentration in August 2015. According to the historical data of AIS, the number of dredgers has increased from February to August 2015 and the maximum number of dredgers was recorded in June 2015. The timing of increase of lights from surface, increase of chlorophyll-a concentration, and increase of number of vessels are consistent.
Keywords: Remote Sensing
|
Ashford, O. M. (1947). A portable cloud searchlight. Weather, 2, 103–104. |
Atchoi, E., Mitkus, M., & Rodríguez, A. (2020). Is seabird light‐induced mortality explained by the visual system development? Conservat Sci and Prac, in press.
Abstract: Seabirds are impacted by coastal light pollution, leading to massive mortality events. Juveniles comprise the majority of affected individuals, while adults are only seldom grounded and reported in rescue programs. We propose a connection between visual system development of burrow nesting seabirds and the observed higher vulnerability to light pollution by a specific age group. We illustrate the need for multidisciplinary research to better understand and further mitigate light-induced mortality.
Keywords: Animals
|