Kocifaj, M., Wallner, S., & Solano-Lamphar, H. A. (2019). An asymptotic formula for skyglow modelling over a large territory. Monthly Notices of the Royal Astronomical Society, 485(2), 2214–2224.
Abstract: An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.
|
Kennard, D. C., & Chamberlin, V. D. (1931). All-night Light for Layers (Vol. Bulletin 476).
|
Yao, J. Q., Zhai, H. R., Tang, X. M., Gao, X. M., & Yang, X. D. (2020). Amazon Fire Monitoring and Analysis Based on Multi-source Remote Sensing Data. IOP Conf. Ser.: Earth Environ. Sci., 474, 042025.
Abstract: In August 2019, a large-scale fire broke out in the Amazon rainforest, bringing serious harm to the ecosystem and human beings. In order to accurately monitor the dynamic change of forest fire in Amazon rainforest and analyse the impact of fire spreading and extinction on the environment, firstly, based on NPP VIIRS data covering the Amazon fire area, the sliding window threshold method is adopted to extract the fire point, and the cause of fire change is monitored and analysed according to the time series. Secondly, based on the time series of CALIPSO data, the vertical distribution changes of atmospheric pollutants in the amazon fire area are analysed, and the comprehensive analysis is carried out by combining NPP VIIRS data. The experimental results show that only NPP VIIRS data is used to predict the fire, and the combination of CALIPSO data can better monitor the forest fire and predict the fire development trend. The combination of optical image and laser radar has greater advantages in dynamic fire monitoring and fire impact analysis. The method described in this paper can provide basic data reference for real-time and accurate prediction of forest fires and provide new ideas for dynamic fire monitoring.
|
Bará, S. (2017). Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Monthly Notices of the Royal Astronomical Society, 473(3), 4164–4173.
Abstract: A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
|
Quinn, G. E., Shin, C. H., Maguire, M. G., & Stone, R. A. (1999). Myopia and ambient lighting at night. Nature, 399(6732), 113–114.
Abstract: Myopia, or short-sightedness, occurs when the image of distant objects, focused by the cornea and lens, falls in front of the retina. It commonly arises from excessive postnatal eye growth, particularly in the vitreous cavity. Its prevalence is increasing and now reaches 70-90% in some Asian populations1,2. As well as requiring optical correction, myopia is a leading risk factor for acquired blindness in adults because it predisposes individuals to retinal detachment, retinal degeneration and glaucoma. It typically develops in the early school years but can manifest into early adulthood2. Its aetiology is poorly understood but may involve genetic and environmental factors1,2, such as viewing close objects, although how this stimulates eye growth is not known3. We have looked at the effects of light exposure on vision, and find a strong association between myopia and night-time ambient light exposure during sleep in children before they reach two years of age.
|