Home | << 1 >> |
![]() |
Solano Lamphar, H. A., & Kocifaj, M. (2013). Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLoS One, 8(2), e56563.
Abstract: In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
|
Sullivan, J. M., & Flannagan, M. J. (2007). Determining the potential safety benefit of improved lighting in three pedestrian crash scenarios. Accid Anal Prev, 39(3), 638–647.
Abstract: The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.
|