|
Adams, C. A., Blumenthal, A., Fernández-Juricic, E., Bayne, E., & St. Clair, C. C. (2019). Effect of anthropogenic light on bird movement, habitat selection, and distribution: a systematic map protocol. Environ Evid, 8(S1), 13.
Abstract: Anthropogenic light is known or suspected to exert profound effects on many taxa, including birds. Documentation of bird aggregation around artificial light at night, as well as observations of bird reactions to strobe lights and lasers, suggests that light may both attract and repel birds, although this assumption has yet to be tested. These effects may cause immediate changes to bird movement, habitat selection and settlement, and ultimately alter bird distribution at large spatial scales. Global increases in the extent of anthropogenic light contribute to interest by wildlife managers and the public in managing light to reduce harm to birds, but there are no evidence syntheses of the multiple ways light affects birds to guide this effort. Existing reviews usually emphasize either bird aggregation or deterrence and do so for a specific context, such as aggregation at communication towers and deterrence from airports. We outline a protocol for a systematic map that collects and organizes evidence from the many contexts in which anthropogenic light is reported to affect bird movement, habitat selection, or distribution. Our map will provide an objective synthesis of the evidence that identifies subtopics that may support systematic review and knowledge gaps that could direct future research questions. These products will substantially advance an understanding of both patterns and processes associated with the responses of birds to anthropogenic light.
|
|
|
Addison, D., & Stewart, B. (2015). Nighttime Lights Revisited: The Use of Nighttime Lights Data as a Proxy for Economic Variables. World Bank Group.
Abstract: The growing availability of free or inexpensive satellite imagery has inspired many researchers to investigate the use of earth observation data for monitoring economic activity around the world. One of the most popular earth observation data sets is the so-called nighttime lights from the Defense Meteorological Satellite Program. Researchers have found positive correlations between nighttime lights and several economic variables. These correlations are based on data measured in levels, with a cross-section of observations within a single time period across countries or other geographic units. The findings suggest that nighttime lights could be used as a proxy for some economic variables, especially in areas or times where data are weak or unavailable. Yet, logic suggests that nighttime lights cannot serve as a good proxy for monitoring the within-in country growth rates all of these variables. Examples examined this paper include constant price gross domestic product, nonagricultural gross domestic product, manufacturing value
added, and capital stocks, as well as electricity consumption, total population, and urban population. The study finds that the Defense Meteorological Satellite Program data are quite noisy and therefore the resulting growth elasticities of Defense Meteorological Satellite Program nighttime lights with respect to most of these socioeconomic variables are low, unstable over time, and generate little explanatory power. The one exception for which Defense Meteorological Satellite Program nighttime lights could serve as a proxy is electricity consumption, measured in 10-year intervals. It is hoped that improved data from the recently launched Suomi National Polar-Orbiting Partnership satellite will help expand or improve these outcomes. Testing this should be an important next step.
|
|
|
Arendt, J., & Middleton, B. (2018). Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S). Gen Comp Endocrinol, 258, 250–258.
Abstract: Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
|
|
|
Asher, A., Shabtay, A., Brosh, A., Eitam, H., Agmon, R., Cohen-Zinder, M., et al. (2015). “Chrono-functional milk”: The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions. Chronobiol Int, 32(10), 1409–1416.
Abstract: Pineal melatonin (MLT) is produced at highest levels during the night, under dark conditions. We evaluated differences in MLT-concentration by comparing daytime versus night time milk samples, from two dairy farms with different night illumination conditions: (1) natural dark (Dark-Night); (2) short wavelength Artificial Light at Night (ALAN, Night-Illuminated). Samples were collected from 14 Israeli Holstein cows from each commercial dairy farm at 04:30 h (“Night-milk”) 12:30 h (“Day-milk”) and analyzed for MLT-concentration. In order to study the effects of night illumination conditions on cows circadian rhythms, Heart Rate (HR) daily rhythms were recorded. MLT-concentrations of Night-milk samples from the dark-night group were significantly (p < 0.001) higher than those of Night-illuminated conditions (30.70 +/- 1.79 and 17.81 +/- 0.33 pg/ml, respectively). Interestingly, night illumination conditions also affected melatonin concentrations at daytime where under Dark-Night conditions values are significantly (p < 0.001) higher than Night-Illuminated conditions, (5.36 +/- 0.33 and 3.30 +/- 0.18 pg/ml, respectively). There were no significant differences between the two treatments in the milk yield and milk composition except somatic cell count (SCC), which was significantly lower (p = 0.02) in the Dark-Night group compared with the Night-Illuminated group. Cows in both groups presented a significant (p < 0.01) HR daily rhythm, therefore we assume that in the night illuminated cows feeding and milking time are the “time keeper”, while in the Dark-night cows, HR rhythms were entrained by the light/dark cycle. The higher MLT-concentration in Dark-night cows with the lower SCC values calls upon farmers to avoid exposure of cows to ALAN. Therefore, under Dark-night conditions milk quality will improve by lowering SCC values where separation between night and day of such milk can produce chrono-functional milk, naturally rich with MLT.
|
|
|
Ashkenazi, I. E., Reinberg, A.,, Bicakova-Rocher, A., & Ticher, A. (1993). The genetic background of individual variations of circadian-rhythm periods in healthy human adults. American Journal of Human Genetics, 52(6), 1250â1259.
Abstract: As a group phenomenon, human variables exhibit a rhythm with a period (tau) equal to 24 h. However, healthy human adults may differ from one another with regard to the persistence of the 24-h periods of a set of variables' rhythms within a given individual. Such an internal desynchronization (or individual circadian dyschronism) was documented during isolation experiments without time cues, both in the present study involving 78 male shift workers and in 20 males and 19 females living in a natural setting. Circadian rhythms of sleep-wake cycles, oral temperature, grip strength of both hands, and heart rate were recorded, and power-spectra analyses of individual time series of about 15 days were used to quantify the rhythm period of each variable. The period of the sleep-wake cycle seldom differed from 24 h, while rhythm periods of the other variables exhibited a trimodal distribution (tau = 24 h, tau > 24 h, tau < 24 h). Among the temperature rhythm periods which were either < 24 h or > 24 h, none was detected between 23.2 and 24 h or between 24 and 24.8 h. Furthermore, the deviations from the 24-h period were predominantly grouped in multiples of +/- 0.8 h. Similar results were obtained when the rhythm periods of hand grip strength were analyzed (for each hand separately). In addition, the distribution of grip strength rhythm periods of the left hand exhibited a gender-related difference. These results suggested the presence of genetically controlled variability. Consequently, the distribution pattern of the periods was analyzed to elucidate its compatibility with a genetic control consisting of either a two-allele system, a multiple-allele system, or a polygenic system. The analysis resulted in structuring a model which integrates the function of a constitutive (essential) gene which produces the exact 24-h period (the Dian domain) with a set of (inducible) polygenes, the alleles of which, contribute identical time entities to the period. The time entities which affected the rhythm periods of the variables examined were in the magnitude of +/- 0.8 h. Such an assembly of genes may create periods ranging from 20 to 28 h (the Circadian domain). The model was termed by us “The Dian-Circadian Model.” This model can also be used to explain the beat phenomena in biological rhythms, the presence of 7-d and 30-d periods, and interindividual differences in sensitivity of rhythm characteristics (phase shifts, synchronization, etc.) to external (and environmental) factors.
|
|