|
Sherman, H., Gutman, R., Chapnik, N., Meylan, J., le Coutre, J., & Froy, O. (2011). Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol, 43(5), 829–838.
Abstract: The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.
|
|
|
Srinivasan, V., Smits, M., Spence, W., Lowe, A. D., Kayumov, L., Pandi-Perumal, S. R., et al. (2006). Melatonin in mood disorders. World J Biol Psychiatry, 7(3), 138–151.
Abstract: The cyclic nature of depressive illness, the diurnal variations in its symptomatology and the existence of disturbed sleep-wake and core body temperature rhythms, all suggest that dysfunction of the circadian time keeping system may underlie the pathophysiology of depression. As a rhythm-regulating factor, the study of melatonin in various depressive illnesses has gained attention. Melatonin can be both a 'state marker' and a 'trait marker' of mood disorders. Measurement of melatonin either in saliva or plasma, or of its main metabolite 6-sulfatoxymelatonin in urine, have documented significant alterations in melatonin secretion in depressive patients during the acute phase of illness. Not only the levels but also the timing of melatonin secretion is altered in bipolar affective disorder and in patients with seasonal affective disorder (SAD). A phase delay of melatonin secretion takes place in SAD, as well as changes in the onset, duration and offset of melatonin secretion. Bright light treatment, that suppresses melatonin production, is effective in treating bipolar affective disorder and SAD, winter type. This review discusses the role of melatonin in the pathophysiology of bipolar disorder and SAD.
|
|