Home | << 1 2 >> |
![]() |
Abay, K. A., & Amare, M. (2018). Night light intensity and women's body weight: Evidence from Nigeria. Econ Hum Biol, 31, 238–248.
Abstract: The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
Keywords: Remote Sensing; Human Health; Adolescent; Adult; Body Mass Index; *Body Weight; Cross-Sectional Studies; Female; Health Surveys; Humans; Lighting/*statistics & numerical data; Middle Aged; Nigeria/epidemiology; Obesity/epidemiology; Overweight/*epidemiology; Prevalence; *Urbanization; Young Adult; *Bmi; *Nigeria; *Night light; *Obesity; *Overweight; *Urbanization
|
Bullough, J. D., Donnell, E. T., & Rea, M. S. (2013). To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections. Accid Anal Prev, 53, 65–77.
Abstract: A two-pronged effort to quantify the impact of lighting on traffic safety is presented. In the statistical approach, the effects of lighting on crash frequency for different intersection types in Minnesota were assessed using count regression models. The models included many geometric and traffic control variables to estimate the association between lighting and nighttime and daytime crashes and the resulting night-to-day crash ratios. Overall, the presence of roadway intersection lighting was found to be associated with an approximately 12% lower night-to-day crash ratio than unlighted intersections. In the parallel analytical approach, visual performance analyses based on roadway intersection lighting practices in Minnesota were made for the same intersection types investigated in the statistical approach. The results of both approaches were convergent, suggesting that visual performance improvements from roadway lighting could serve as input for predicting improvements in crash frequency. A provisional transfer function allows transportation engineers to evaluate alternative lighting systems in the design phase so selections based on expected benefits and costs can be made.
Keywords: Lighting; Accident Prevention/*methods; Accidents, Traffic/*prevention & control/psychology/statistics & numerical data; Cross-Sectional Studies; *Environment Design; Humans; *Lighting; Minnesota; Models, Statistical; Photoperiod; Psychomotor Performance; Regression Analysis; Safety/statistics & numerical data; Visual Perception
|
Cajochen, C., Altanay-Ekici, S., Munch, M., Frey, S., Knoblauch, V., & Wirz-Justice, A. (2013). Evidence that the lunar cycle influences human sleep. Curr Biol, 23(15), 1485–1488.
Abstract: Endogenous rhythms of circalunar periodicity ( approximately 29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.
Keywords: Adult; Aged; Cross-Sectional Studies; Electroencephalography; Female; Humans; Hydrocortisone/analysis/metabolism; Male; Melatonin/analysis/metabolism; Middle Aged; Moon; Nontherapeutic Human Experimentation; Periodicity; Saliva/metabolism; Sleep/*physiology; Sleep Stages/physiology; Young Adult
|
Kessel, L., Siganos, G., Jorgensen, T., & Larsen, M. (2011). Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep, 34(9), 1215–1219.
Abstract: STUDY OBJECTIVES: Sleep pattern and circadian rhythms are regulated via the retinohypothalamic tract in response to stimulation of a subset of retinal ganglion cells, predominantly by blue light (450-490 nm). With age, the transmission of blue light to the retina is reduced because of the aging process of the human lens, and this may impair the photoentrainment of circadian rhythm leading to sleep disorders. The aim of the study was to examine the association between lens aging and sleep disorders. DESIGN: Cross-sectional population based study. SETTING: The study was performed at the Research Center for Prevention and Health, Glostrup Hospital, Denmark and at the Department of Ophthalmology, Herlev Hospital, Denmark. PARTICIPANTS: An age- and sex-stratified sample of 970 persons aged 30 to 60 years of age drawn from a sample randomly selected from the background population. INTERVENTIONS: Not applicable. MEASUREMENTS AND RESULTS: Sleep disturbances were evaluated by a combination of questionnaire and the use of prescription sleeping medication. Lens aging (transmission and yellowing) was measured objectively by lens autofluorometry. The risk of sleep disturbances was significantly increased when the transmission of blue light to the retina was low, even after correction for the effect of age and other confounding factors such as smoking habits, diabetes mellitus, gender, and the risk of ischemic heart disease (P < 0.0001). CONCLUSIONS: Filtration of blue light by the aging lens was significantly associated with an increased risk of sleep disturbances. We propose that this is a result of disturbance of photoentrainment of circadian rhythms.
Keywords: Adult; Age Factors; Aging/*pathology/physiology; Circadian Rhythm/physiology; Cross-Sectional Studies; Female; Fluorometry; Humans; Lens, Crystalline/*pathology/physiopathology; *Light; Male; Middle Aged; Retina/*physiopathology; Risk Factors; *Scattering, Radiation; Sleep Disorders/*etiology; Circadian rhythm; cataract; melanopsin; sleep; blue light
|
Obayashi, K., Saeki, K., Iwamoto, J., Ikada, Y., & Kurumatani, N. (2013). Exposure to light at night and risk of depression in the elderly. J Affect Disord, 151(1), 331–336.
Abstract: BACKGROUND: Recent advances in understanding the fundamental links between chronobiology and depressive disorders have enabled exploring novel risk factors for depression in the field of biological rhythms. Increased exposure to light at night (LAN) is common in modern life, and LAN exposure is associated with circadian misalignment. However, whether LAN exposure in home settings is associated with depression remains unclear. METHODS: We measured the intensities of nighttime bedroom light and ambulatory daytime light along with overnight urinary melatonin excretion (UME) in 516 elderly individuals (mean age, 72.8). Depressive symptoms were assessed using the Geriatric Depression Scale. RESULTS: The median nighttime light intensity was 0.8lx (interquartile range, 0.2-3.3). The depressed group (n=101) revealed significantly higher prevalence of LAN exposure (average intensity, >/= 5 lx) compared with that of the nondepressed group (n=415) using a multivariate logistic regression model adjusted for daytime light exposure, insomnia, hypertension, sleep duration, and physical activity [adjusted odds ratio (OR): 1.89; 95% confidence interval (CI), 1.10-3.25; P=0.02]. Consistently, another parameter of LAN exposure (duration of intensity >/= 10 lx, >/= 30 min) was significantly more prevalent in the depressed than in the nondepressed group (adjusted OR: 1.71; 95% CI, 1.01-2.89; P=0.046). In contrast, UME was not significantly associated with depressive symptoms. LIMITATION: Cross-sectional analysis. CONCLUSION: These results suggested that LAN exposure in home settings is significantly associated with depressive symptoms in the general elderly population. The risk of depression may be reduced by keeping nighttime bedroom dark.
|