|
Davies, T. W., Coleman, M., Griffith, K. M., & Jenkins, S. R. (2015). Night-time lighting alters the composition of marine epifaunal communities. Biology Letters, 11(4), 20150080.
Abstract: Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.
|
|
|
Davies, T. W., Duffy, J. P., Bennie, J., & Gaston, K. J. (2014). The nature, extent, and ecological implications of marine light pollution. Frontiers in Ecology and the Environment, 12(6), 347–355.
Abstract: Despite centuries of use, artificial light at night has only recently been recognized as a cause for environmental concern. Its global extent and ongoing encroachment into naturally lit ecosystems has sparked scientific interest into the many ways in which it may negatively affect human health, societal attitudes, scientific endeavors, and biological processes. Yet, perhaps because sources of artificial light are largely land based, the potential for artificial light pollution to interfere with the biology of the ocean has not been explored in any detail. There is little information on how light pollution affects those species, behaviors, and interactions that are informed by the intensity, spectra, and periodicity of natural nighttime light in marine ecosystems. Here, we provide an overview of the extent of marine light pollution, discuss how it changes the physical environment, and explore its potential role in shaping marine ecosystems.
|
|
|
Davies, T. W., Duffy, J. P., Bennie, J., & Gaston, K. J. (2015). Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas: Light pollution in marine protected areas. Conservation Lett., 9(3), 164â171.
Abstract: Many marine ecosystems are shaped by regimes of natural light guiding the behavior of their constituent species. As evidenced from terrestrial systems, the global introduction of nighttime lighting is likely influencing these behaviors, restructuring marine ecosystems, and compromising the services they provide. Yet the extent to which marine habitats are exposed to artificial light at night is unknown. We quantified nighttime artificial light across the world's network of marine protected areas (MPAs). Artificial light is widespread and increasing in a large percentage of MPAs. While increases are more common among MPAs associated with human activity, artificial light is encroaching into a large proportion of even those marine habitats protected with the strongest legislative designations. Given the current lack of statutory tools, we propose that allocating âMarine Dark Sky Parkâ status to MPAs will help incentivize responsible authorities to hold back the advance of artificial light.
|
|
|
Davies, T. W., Bennie, J., Inger, R., Hempel de Ibarra, N., & Gaston, K. J. (2013). Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Global Change Biologyology, 19(5), 1417–1423.
Abstract: Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.
|
|
|
Dominoni, D. M., Helm, B., Lehmann, M., Dowse, H. B., & Partecke, J. (2013). Clocks for the city: circadian differences between forest and city songbirds. Proc Biol Sci, 280(1763), 20130593.
Abstract: To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.
|
|