|
Andreatta, G., & Tessmar-Raible, K. (2020). The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks. J Mol Biol, in press.
Abstract: Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
|
|
|
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O., & Levy, O. (2015). Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife, 4, e09991.
Abstract: Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.
|
|
|
Ouyang, J. Q., Davies, S., & Dominoni, D. (2018). Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J Exp Biol, 221(Pt 6).
Abstract: Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
|
|
|
Rumanova, V. S., Okuliarova, M., & Zeman, M. (2020). Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int J Mol Sci, 21(15).
Abstract: The disruption of circadian rhythms by environmental conditions can induce alterations in body homeostasis, from behavior to metabolism. The light:dark cycle is the most reliable environmental agent, which entrains circadian rhythms, although its credibility has decreased because of the extensive use of artificial light at night. Light pollution can compromise performance and health, but underlying mechanisms are not fully understood. The present review assesses the consequences induced by constant light (LL) in comparison with dim light at night (dLAN) on the circadian control of metabolism and behavior in rodents, since such an approach can identify the key mechanisms of chronodisruption. Data suggest that the effects of LL are more pronounced compared to dLAN and are directly related to the light level and duration of exposure. Dim LAN reduces nocturnal melatonin levels, similarly to LL, but the consequences on the rhythms of corticosterone and behavioral traits are not uniform and an improved quantification of the disrupted rhythms is needed. Metabolism is under strong circadian control and its disruption can lead to various pathologies. Moreover, metabolism is not only an output, but some metabolites and peripheral signal molecules can feedback on the circadian clockwork and either stabilize or amplify its desynchronization.
|
|