|
Ayalon, I., de Barros Marangoni, L. F., Benichou, J. I. C., Avisar, D., & Levy, O. (2019). Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob Chang Biol, 25(12), 4194–4207.
Abstract: Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or “ecological light pollution” represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de-synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.
|
|
|
Baskaran, T., Min, B., & Uppal, Y. (2015). Election cycles and electricity provision: Evidence from a quasi-experiment with Indian special elections. Journal of Public Economics, 126, 64–73.
Abstract: We present evidence from India showing that state governments induce electoral cycles in electricity service provision. Our data and research strategy allow us to build on models of political business cycles and targeted distribution in two important ways. First, we demonstrate that by manipulating the flow of critical inputs into economic activity like electricity, elected leaders can influence economic outcomes even in contexts where they have constrained fiscal capacity. Second, we identify the effect of elections on electricity provision by focusing on special elections held for exogenous reasons. Our results show that state governments induce substantive increases in electricity service to constituencies that hold special elections. Manipulation of the power supply is stronger in contested constituencies and during special elections held in states where the government commands only a small majority. Overall, we find no evidence of positive welfare effects from the electoral manipulation of electricity supply.
|
|
|
Fan, J., He, H., Hu, T., Zhang, P., Yu, X., & Zhou, Y. (2019). Estimation of Landscape Pattern Changes in BRICS from 1992 to 2013 Using DMSP-OLS NTL Images. J Ind Soc Rem Sens, 47(5), 725–735.
Abstract: Nighttime light data from the Defense Meteorological Satellite Program’s Operational Linescan System are widely used for monitoring urbanization development. Brazil, Russia, India, China and South Africa (BRICS) countries have global economic and cultural influence in the new era. It was the first time for the researches about BRICS countries adopting nighttime light data to analyze the urbanization process. In this paper, we calibrated and extracted annual urbanized area patches from cities in BRICS based on a quadratic polynomial model. Nine landscape indexes were calculated to analyze urbanization process characteristics in BRICS. The results suggested that China and India both expanded more rapidly than other countries, with urban areas that increased by more than 100%. The expansion of large core cities was dominant in the urbanization of China, while emerging and expanding small urban patches were major forces in the urbanization of India. Since 1992, urbanization declined and urban areas shrunk in Russia, but core cities still maintained strength of urbanization. Due to economic recovery, urban areas near large cities in Russia began to expand. From 1992 to 2013, the urbanization process in South Africa developed slowly, as evidenced by time series fluctuations, but overall the development remained stable. The degree of urbanization in Brazil was greater than that in South Africa but less than that in Russia. Large-sized cities expanded slowly and small-sized cities clearly expanded in BRICS from 1992 to 2013.
|
|
|
Johnson, A., Phadke, A., & de la Rue du Cann, S. (2014). Energy Savings Potential for Street Lighting in India. Lawrence Berkely National Laboratory report, .
|
|
|
Kumar, P., Rehman, S., Sajjad, H., Tripathy, B. R., Rani, M., & Singh, S. (2019). Analyzing trend in artificial light pollution pattern in India using NTL sensor's data. Urban Climate, 27, 272–283.
Abstract: Exponential growth of population and the resultant rapid rate of urbanization and industrialization in India have significantly transformed its nighttime light environment. The study makes an attempt to analyze the spatio-temporal pattern of light pollution and its causative actors in a fast-developing economy. We utilized nighttime light data from 1993 to 2013 and calibrated through linear regression. Ten patches of major changes from the whole study area were selected to assess the intensity of light pollution at regional scale. Spatial analysis of light pollution in selected patches revealed that New Delhi, Telangana, Maharashtra, Karnataka and Uttar Pradesh experienced increase in very high light pollution intensity. West Bengal, Gujarat and Tamil Nadu witnessed a remarkable change from low to high light pollution. Urban expansion, industrial development and air pollution are main drivers for increasing light pollution. Strong correlation was found between light pollution and digital numbers (DN) values at regional scale. The maps generated through Defense Meteorological Satellite Program Operational Line Scanner Night Time Light data not only helped in assessing the intensity of light pollution but also identified its causative actors.The results of study can effectively be utilized for setting priorities of environmental protection in different geographical regions at various scales.
|
|