Bennie, J., Davies, T. W., Cruse, D., Inger, R., & Gaston, K. J. (2015). Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Philos Trans R Soc Lond B Biol Sci, 2015, 20140131.
Abstract: Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.
|
Davies, T. W., Bennie, J., & Gaston, K. J. (2012). Street lighting changes the composition of invertebrate communities. Biology Letters, 8(5), 764–767.
Abstract: Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.
|
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O., & Levy, O. (2015). Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife, 4, e09991.
Abstract: Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.
|
Kronfeld-Schor, N., Dominoni, D., de la Iglesia, H., Levy, O., Herzog, E. D., Dayan, T., et al. (2013). Chronobiology by moonlight. Proc Biol Sci, 280(1765), 20123088.
Abstract: Most studies in chronobiology focus on solar cycles (daily and annual). Moonlight and the lunar cycle received considerably less attention by chronobiologists. An exception are rhythms in intertidal species. Terrestrial ecologists long ago acknowledged the effects of moonlight on predation success, and consequently on predation risk, foraging behaviour and habitat use, while marine biologists have focused more on the behaviour and mainly on reproduction synchronization with relation to the Moon phase. Lately, several studies in different animal taxa addressed the role of moonlight in determining activity and studied the underlying mechanisms. In this paper, we review the ecological and behavioural evidence showing the effect of moonlight on activity, discuss the adaptive value of these changes, and describe possible mechanisms underlying this effect. We will also refer to other sources of night-time light ('light pollution') and highlight open questions that demand further studies.
|
Leopold, M. F., Philippart, C. J. M., & Yorio, P. (2010). Nocturnal feeding under artificial light conditions by Brown-Hooded Gull (Larus Maculipennis) in Puerto Madryn harbour (Chubut province, Argentina). El hornero, 25(2), 55–60.
Abstract: This paper describes nocturnal, marine feeding behaviour in the Brown-hooded Gull (Larus maculipennis) in November 2009. The gulls assembled at night at the end of a long pier, running 800 m offshore into the Golfo Nuevo, at Puerto Madryn, Chubut Province, Argentina. Powerful lights predictably lighted the water around the end of the pier and attracted many small prey animals to the surface. Several hundreds of gulls, presumed to be local breeders, came every night to feed on this bounty, using various feeding techniques and taking several prey species and sizes. Potential prey items were caught to be identified by vertical plankton hauls. The gulls most likely took relatively large Isopoda (Idothea sp.), Polychaeta (Platynereis sp.) and fish larvae (Patagonotothen sp.) as well as smaller crustaceans, mostly Amphipoda (Phoxocephalidae) and Mysidacea. The gulls caught small prey items while swimming, by rapid surface pecking, while they hunted the larger prey species by flying low over the water and performing shallow, vertical plunge-dives. During daylight, only few gulls ventured from land into the bay, indicating that they took advantage of the nocturnal feeding opportunity, facilitated by artificial lighting. The clear short-term gain of exploiting this novel foraging opportunity may be offset by potential threats such as increased vulnerability to predators or contamination by oil spills from ships moored along the pier.
|