Ściężor, T., & Czaplicka, A. (2020). The impact of atmospheric aerosol particles on the brightness of the night sky. Journal of Quantitative Spectroscopy and Radiative Transfer, 254, 107168.
Abstract: This paper analyses the impact of various types of aerosols, both of natural and anthropogenic origin, on the brightness of the night sky glow in southern Poland. The particles of particulate matter, related to the combustion of solid fuels in the winter, the volcanic or desert dust, as well as mists and haze, are considered as the artificial light scattering sources. Measurements of the brightness of the cloudless and moonless night sky were done in 2009–2016, both within the city of Krakow and in suburban areas, as well as in mountainous ones. The strong linear correlation between the brightness of such sky and the concentration of particulate matter is shown. The acoustic sounding of the atmosphere (SODAR) has indicated the possibility of a relationship between the brightness of the night sky and the amount of such particulates, which accumulate in atmospheric boundary layers. The usefulness of the theoretical model of horizontal transport of dust in the atmosphere (FAPPS) for forecasting the brightness of the night sky glow is also pointed out. A clear effect of the Saharan origin dust clouds on the brightness of the night sky glow is shown. This brightness, in the conditions of a low level of light pollution, is associated with the forecasted optical density of such clouds. It is also demonstrated, that with the thickening of mist, the impact of distant light sources on the brightness of the night sky decreases, but the one of a nearby sources becomes more significant. The conclusion states that anthropogenic particulate matter has the greatest impact on the brightness of the cloudless night sky glow in winter. In areas heavily polluted with light, fogs and mist are particularly important. In areas with low levels of light pollution, the clear impact of desert dust is visible.
|
![]() ![]() |
Kocifaj, M., & Bará, S. (2020). Aerosol characterization using satellite remote sensing of light pollution sources at night. MNRAS, 495(1), L76–L80.
Abstract: A demanding challenge in atmospheric research is the night-time characterization of aerosols using passive techniques, that is, by extracting information from scattered light that has not been emitted by the observer. Satellite observations of artificial night-time lights have been used to retrieve some basic integral parameters, like the aerosol optical depth. However, a thorough analysis of the scattering processes allows one to obtain substantially more detailed information on aerosol properties. In this letter, we demonstrate a practicable approach for determining the aerosol particle size number distribution function in the air column, based on the measurement of the angular radiance distribution of the scattered light emitted by night- time lights of cities and towns, recorded from low Earth orbit. The method is self-calibrating and does not require the knowledge of the absolute city emissions. The input radiance data are readily available from several spaceborne platforms, like the VIIRS-DNB radiometer onboard the Suomi-NPP satellite.
Keywords: Skyglow; Radiative transfer; Light scattering; Aerosols
|
![]() ![]() |
Kocifaj, M. (2014). Modeling the night-sky radiances and inversion of multi-angle and multi-spectral radiance data. Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 35–42.
Abstract: Information on a city's emission pattern is crucial for any reasonable predictions of night sky radiances. Unfortunately, the bulk radiant intensity distribution as a function of zenith angle is scarcely available for any city throughout the world. Even if the spatial arrangements of urban light fixtures and lamp specifications are known, the cumulative effect on upwardly directed beams is difficult to determine; due to heterogeneity of the ambient environment, reflectance from ground surfaces, arbitrarily scattered obstacles, orography of terrain and many other site specific factors.
The present paper develops a theoretical model and a numerical technique applicable to the retrieval of a City Emission Function (CEF) from the spectral sky radiances measured under clear sky conditions. Mathematically it is an inverse problem that is solved using a regularization algorithm in which the minimization routines penalize non-smooth solutions and the radiant intensity pattern is found subject to regularizing constraints. When spectral sky radiances are measured at a set of discrete wavelengths or at a set of discrete distances from the monitored light source, both the aerosol optical properties and the CEF can be determined concurrently. One great advantage of this approach is that no a-priori assumptions need to be made concerning aerosol properties, such as aerosol optical depth. The numerical experiment on synthetically generated city emissions' patterns has proven the functionality of the method presented. Keywords: Sky-glow; Light pollution; Aerosols; Light scattering; Inverse problems
|
![]() ![]() |
Kolláth, Z., & Kránicz, B. (2014). On the feasibility of inversion methods based on models of urban sky glow. Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 27–34.
Abstract: Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures.
Keywords: Light pollution; Radiative transfer; Light scattering
|
![]() ![]() |