|
Abay, K. A., & Amare, M. (2018). Night light intensity and women's body weight: Evidence from Nigeria. Econ Hum Biol, 31, 238–248.
Abstract: The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
|
|
|
Aceituno, J., Sánchez, S. F., Aceituno, F. J., GaladÃ-EnrÃquez, D., Negro, J. J., Soriguer, R. C., et al. (2011). An All-Sky Transmission Monitor: ASTMON. Publications of the Astronomical Society of the Pacific, 123(907), 1076–1086.
Abstract: We present here the All-Sky Transmission Monitor (ASTMON), designed to perform a continuous monitoring of the surface brightness of the complete night sky in several bands. The data acquired are used to derive, in addition, a subsequent map of the multiband atmospheric extinction at any location in the sky and a map of the cloud coverage. The instrument has been manufactured to withstand extreme weather conditions and to remain operative. Designed to be fully robotic, it is ideal to be installed outdoors as a permanent monitoring station. The preliminary results based on two of the currently operative units (at Doñana National Park, Huelva, and at the Calar Alto Observatory, AlmerÃa, Spain) are presented here. The parameters derived using ASTMON are in good agreement with those previously reported, which illustrates the validity of the design and the accuracy of the manufacturing. The information provided by this instrument will be presented in forthcoming articles, once we have accumulated a statistically significant amount of data.
|
|
|
Addison, D., & Stewart, B. (2015). Nighttime Lights Revisited: The Use of Nighttime Lights Data as a Proxy for Economic Variables. World Bank Group.
Abstract: The growing availability of free or inexpensive satellite imagery has inspired many researchers to investigate the use of earth observation data for monitoring economic activity around the world. One of the most popular earth observation data sets is the so-called nighttime lights from the Defense Meteorological Satellite Program. Researchers have found positive correlations between nighttime lights and several economic variables. These correlations are based on data measured in levels, with a cross-section of observations within a single time period across countries or other geographic units. The findings suggest that nighttime lights could be used as a proxy for some economic variables, especially in areas or times where data are weak or unavailable. Yet, logic suggests that nighttime lights cannot serve as a good proxy for monitoring the within-in country growth rates all of these variables. Examples examined this paper include constant price gross domestic product, nonagricultural gross domestic product, manufacturing value
added, and capital stocks, as well as electricity consumption, total population, and urban population. The study finds that the Defense Meteorological Satellite Program data are quite noisy and therefore the resulting growth elasticities of Defense Meteorological Satellite Program nighttime lights with respect to most of these socioeconomic variables are low, unstable over time, and generate little explanatory power. The one exception for which Defense Meteorological Satellite Program nighttime lights could serve as a proxy is electricity consumption, measured in 10-year intervals. It is hoped that improved data from the recently launched Suomi National Polar-Orbiting Partnership satellite will help expand or improve these outcomes. Testing this should be an important next step.
|
|
|
Agbo David, O., Madukwe Chinaza, A., & Anyalewechi Chika, J. (2019). Development of Solar Power Intelligent Street Lights System. International Journal of Scientific and Research Publications, 9(6).
Abstract: The lack of natural light during night time in the urban environment has always been a problem. From people not being able to see where they are going, to the greater chance of being attacked or mugged at night which as we all know is a problem that has been in existence since humans started living together. The main advantage of this system exists in the reduction of costs related to energy consumption by the street light by integrating a vehicle/human detection algorithm into the system. The introduction of this vehicle/human detection algorithm further reduces the power consumption costs. In this project, solar PV is used to supply the energy to charge the battery. The battery later powers the operation of the whole system. The 12- 17V of the solar is buck to a steady 12V for battery charging. A light sensor is connected to the microcontroller that sense the light during day time, when the presence of day light is sensed the microcontroller turns ON the mosfet of the buck converter. If the voltage of the solar PV is greater than 12V, it charges the battery and switches off the load transistor. But at dawn, when the solar PV voltage is less than 12V the microcontroller turn OFF the buck converter mosfet and switch ON the load transistor. When no vehicle or human is detected for 10mins the microcontroller dims the LED lamp. If vehicle or human is detected the microcontroller brighten the LED lamp and inform the next microcontroller to brighten its LED lamp. If the next street light did not detect a vehicle or human after 10 mins it dims the lamp but if it detects a vehicle or human the lamp remain brightened. The microcontroller uses the ultrasonic sensor to detect object and the PIR sensor to detect human. The RF module is used for communication between the microcontrollers to inform each other the presence of vehicle or human.
|
|
|
Ahn, H., Lee, S., & Jo, E. (2018). Assessment on Lighting Management Zones for Light pollution in Gwangju Metropolitan City. 한국태양에너지학회 학술대회논문집, .
|
|