|
Falchi, F., & Bará, S. (2020). A linear systems approach to protect the night sky: implications for current and future regulations. R. Soc. open sci., 7(12), 201501.
Abstract: The persistent increase of artificial light emissions is causing a progressive brightening of the night sky in most regions of the world. This process is a threat for the long-term sustainability of the scientific and educational activity of ground-based astronomical observatories operating in the optical range. Huge investments in building, scientific and technical workforce, equipment and maintenance can be at risk if the increasing light pollution levels hinder the capability of carrying out the top-level scientific observations for which these key scientific infrastructures were built. Light pollution has other negative consequences, as e.g. biodiversity endangering and the loss of the starry sky for recreational, touristic and preservation of cultural heritage. The traditional light pollution mitigation approach is based on imposing conditions on the photometry of individual sources, but the aggregated effects of all sources in the territory surrounding the observatories are seldom addressed in the regulations. We propose that this approach shall be complemented with a top-down, ambient artificial skyglow immission limits strategy, whereby clear limits are established to the admissible deterioration of the night sky above the observatories. We describe the general form of the indicators that can be employed to this end, and develop linear models relating their values to the artificial emissions across the territory. This approach can be easily applied to other protection needs, like e.g. to protect nocturnal ecosystems, and it is expected to be useful for making informed decisions on public lighting, in the context of wider spatial planning projects.
|
|
|
Bisketzis, N., Polymeropoulos, G., & Topalis, F. V. (2004). A Mesopic Vision Approach for a Better Design of Road Lighting. WSEAS Transactions on Circuits and Systems, 3(5), 1380â1385.
|
|
|
Fiorentin, P., & Boscaro, F. (2019). A method for measuring the light output of video advertising reproduced by LED billboards. Measurement, 138, 25–33.
Abstract: Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.
|
|
|
Pracki, P., & Skarżyński, K. (2020). A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage. Sustainability, 12(4), 1330.
Abstract: This paper presents an attempt at a unified approach for the assessment of outdoor lighting solutions at the design stage. First of all, the lighting criteria for different types of outdoor lighting installations have been carefully described. Despite the differences in criteria, it is possible to find a common ground for the assessment of lighting solutions at the design stage. This is based on the need for the assessment of lighting solutions to be included in the requirements for the luminous environment, light pollution, and energy efficiency. The review and analysis of the standards and reports allows an experimental procedure to be created, the main aim of which is to find the best and most sustainable lighting solution for any outdoor situation. The procedure was tested by the example of an analysis of parking lot lighting solutions. In the case analyzed, 120 solutions were considered. It appeared that, in only 65 cases were the requirements referring to both lighting condition and light pollution met. Finally, based on the lighting energy efficiency assessment, ten solutions were selected as the most suitable. Furthermore, only one solution out of the ten was the most beneficial, taking into account the extra criterion of basic economic cost. The case study confirms that the assessment procedure allows the most beneficial solution to be selected, taking into account the luminous environment, as well as light pollution and energy efficiency criteria. The proposed multi-criteria assessment procedure may be used as a valuable tool by lighting designers to select the most beneficial solution in order to meet the needs of safety, visual efficiency, and comfort, as well as taking into account light pollution and energy efficiency restrictions.
|
|
|
Wang, G., Wang, S., Zhang, L., Sun, F., Yan, F., & Yang, X. (2019). A New Light Control Method with Charge Induction of Moving Target. IEEE Sensors Journal, 19(16).
Abstract: Intelligent lamp control system has been widely studied all over the world because of its energy saving and social effect. In this paper, a new intelligent lamp control method based on charge induction for moving target is proposed. The detection model is established with the surface charge induction and verified by a luggage detection experiment. The intelligent lamp control system using the detection method is carried out. The performance of the system demonstrates that the proposed method can detect the moving target at any orientation whatever with or without occlusion and the detection distance can reach more than 3 m for the pedestrian.
|
|