Stanley, T. R., White, J. M., Teel, S., & Nicholas, M. (2020). Brightness of the Night Sky Affects Loggerhead (Caretta caretta) Sea Turtle Hatchling Misorientation but Not Nest Site Selection. Front. Mar. Sci., 7.
Abstract: Sea turtles in the Gulf of Mexico, which are listed as either threatened or endangered under the US Endangered Species Act, face numerous threats but are particularly susceptible to the negative effects of light pollution on nesting beaches. Light pollution affects the distribution, density, and placement of nests on beaches, and disrupts seafinding in hatchlings emerging from nests; often leading to their death. Rapid urban growth near Gulf Islands National Seashore (GUIS), FL, United States, over the last century has contributed to increased light pollution on its beaches. There is concern that light pollution is causing females to build nests in at-risk locations subject to erosion and flooding, and is causing the observed high rates of hatchling misorientation. From 2015 to 2016, we measured brightness of the night sky, horizon profile, and lunar variables at GUIS at loggerhead (Caretta caretta) nests to assess the effects of brightness on building of at-risk nests and hatchling misorientation. In addition, we quantified the effects of relocating at-risk nests on nest success. We found that contrast in brightness between the landward and seaward directions at GUIS was partially responsible for high rates of hatchling misorientation, and there was a strong moderating influence of lunar fraction and lunar altitude on hatchling misorientation: larger lunar fractions and lower lunar altitudes reduced misorientation. We did not find an effect of artificial light, horizon profile, or lunar fraction on the propensity of loggerheads to build nests in at-risk locations, and found no evidence that relocating nests at GUIS reduced loggerhead nest success. In fact, we found that nest success was improved and hatchling misorientation rates were reduced for relocated loggerhead nests.
|
|
Colman, L. P., Lara, P. H., Bennie, J., Broderick, A. C., de Freitas, J. R., Marcondes, A., et al. (2020). Assessing coastal artificial light and potential exposure of wildlife at a national scale: the case of marine turtles in Brazil. Biodivers Conserv, 29(4), 1135–1152.
Abstract: Coastal areas provide critical nesting habitat for marine turtles. Understanding how artificial light might impact populations is key to guide management strategies. Here we assess the extent to which nesting populations of four marine turtle species—leatherback (Dermochelys coriacea), olive ridley (Lepidochelys olivacea), hawksbill (Eretmochelys imbricata) and two subpopulations of loggerhead (Caretta caretta) turtles—are exposed to light pollution across 604 km of the Brazilian coast. We used yearly night-time satellite images from two 5-year periods (1992–1996 and 2008–2012) from the US Air Force Defense Meteorological Satellite Programme (DMSP) to determine the proportion of nesting areas that are exposed to detectable levels of artificial light and identify how this has changed over time. Over the monitored time-frame, 63.7% of the nesting beaches experienced an increase in night light levels. Based on nest densities, we identified 54 reproductive hotspots: 62.9% were located in areas potentially exposed to light pollution. Light levels appeared to have a significant effect on nest densities of hawksbills and the northern loggerhead turtle stock, however high nest densities were also seen in lit areas. The status of all species/subpopulations has improved across the time period despite increased light levels. These findings suggest that (1) nest site selection is likely primarily determined by variables other than light and (2) conservation strategies in Brazil appear to have been successful in contributing to reducing impacts on nesting beaches. There is, however, the possibility that light also affects hatchlings in coastal waters, and impacts on population recruitment may take longer to fully manifest in nesting numbers. Recommendations are made to further this work to provide deeper insights into the impacts of anthropogenic light on marine turtles.
|
|
Weishampel, Z. A., Cheng, W. - H., & Weishampel, J. F. (2016). Sea turtle nesting patterns in Florida vis-Ã -vis satellite-derived measures of artificial lighting. Remote Sens Ecol Conserv, 2(1), 59–72.
Abstract: Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01â0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1â100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.
|
|
Sella, K. N., Salmon, M., & Witherington, B. E. (2006). Filtered Streetlights Attract Hatchling Marine Turtles. Chelonian Conservation and Biology, 5(2), 255–261.
Abstract: On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those < 530 nm; those < 570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.
|
|
Lorne, J., & Salmon, M. (2007). Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endang. Species Res., 3, 23–30.
Abstract: Artificial lighting disrupts sea turtle hatchling orientation from the nest to the sea. We studied how a light-induced landward crawl affects the later ability of hatchlings to crawl to the sea, and to swim away from the shore from a dark beach. A brief (2 min) landward crawl had no effect on swimming orientation as long as surface waves were present. In a calm sea, landward-crawling hatchlings failed to swim offshore, while those crawling seaward were well oriented. A long (2 h) crawl toward a landward light source, however, impaired the ability of hatchlings to crawl seaward. These results demonstrate that orientation toward artificial light sources compromises the ability of hatchlings to respond to natural orientation cues, both on land and in the sea. Based on these results, we suggest several changes to current management practices used when releasing misoriented turtles in the wild.
|
|