|
Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., et al. (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol, 62, 335–364.
Abstract: Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
|
|
|
Cochran, W. W., Mouritsen, H., & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science, 304(5669), 405–408.
Abstract: Night migratory songbirds can use stars, sun, geomagnetic field, and polarized light for orientation when tested in captivity. We studied the interaction of magnetic, stellar, and twilight orientation cues in free-flying songbirds. We exposed Catharus thrushes to eastward-turned magnetic fields during the twilight period before takeoff and then followed them for up to 1100 kilometers. Instead of heading north, experimental birds flew westward. On subsequent nights, the same individuals migrated northward again. We suggest that birds orient with a magnetic compass calibrated daily from twilight cues. This could explain how birds cross the magnetic equator and deal with declination.
|
|
|
Muheim, R., Phillips, J. B., & Akesson, S. (2006). Polarized light cues underlie compass calibration in migratory songbirds. Science, 313(5788), 837–839.
Abstract: Migratory songbirds use the geomagnetic field, stars, the Sun, and polarized light patterns to determine their migratory direction. To prevent navigational errors, it is necessary to calibrate all of these compass systems to a common reference. We show that migratory Savannah sparrows use polarized light cues from the region of sky near the horizon to recalibrate the magnetic compass at both sunrise and sunset. We suggest that skylight polarization patterns are used to derive an absolute (i.e., geographic) directional system that provides the primary calibration reference for all of the compasses of migratory songbirds.
|
|
|
Witkowski, P., & Korzeniewska, E. (2019). Comparative analysis of HPS and LED luminaries in terms of effectiveness of greenhouse plant lighting and light emission. IEEE Xplore, .
Abstract: The article focuses on the analysis of the parameters of light sources, spectrum characteristics of HPS and LED lighting to achieve the best results in greenhouse cultivation with the least energy consumption, and the escape of light into space. The authors have compared both sodium HPS and LED luminaries in the aspect of colour light efficiency and their influence on the plant vegetation process.
|
|