Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Dumont, M., Lanctot, V., Cadieux-Viau, R., & Paquet, J. (2012). Melatonin production and light exposure of rotating night workers. Chronobiol Int, 29(2), 203–210.
Abstract: Decreased melatonin production, due to acute suppression of pineal melatonin secretion by light exposure during night work, has been suggested to underlie higher cancer risks associated with prolonged experience of night work. However, the association between light exposure and melatonin production has never been measured in the field. In this study, 24-h melatonin production and ambulatory light exposure were assessed during both night-shift and day/evening-shift periods in 13 full-time rotating shiftworkers. Melatonin production was estimated with the excretion of urinary 6-sulfatoxymelatonin (aMT6s), and light exposure was measured with an ambulatory photometer. There was no difference in total 24-h aMT6s excretion between the two work periods. The night-shift period was characterized by a desynchrony between melatonin and sleep-wake rhythms, as shown by higher melatonin production during work and lower melatonin production during sleep when working night shifts than when working day/evening shifts. Light exposure during night work showed no correlation with aMT6s excreted during the night of work (p > .5), or with the difference in 24-h aMT6s excretion between the two work periods (p > .1). However, light exposure during night work was negatively correlated with total 24-h aMT6s excretion over the entire night-shift period (p < .01). In conclusion, there was no evidence of direct melatonin suppression during night work in this population. However, higher levels of light exposure during night work may have decreased total melatonin production, possibly by initiating re-entrainment and causing internal desynchrony. This interpretation is consistent with the proposition that circadian disruption, of which decreased melatonin production is only one of the adverse consequences, could be the mediator between night shiftwork and cancer risks.
|
Eisenstein, M. (2013). Chronobiology: stepping out of time. Nature, 497(7450), S10–2.
Keywords: Human Health; Animals; Benzofurans/therapeutic use; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/genetics/*physiology; Cyclopropanes/therapeutic use; Efficiency/physiology; Humans; Melatonin/agonists/metabolism; Obesity/metabolism; Sleep/genetics/*physiology; Suprachiasmatic Nucleus/metabolism
|
Erren, T. C., & Reiter, R. J. (2009). Light Hygiene: Time to make preventive use of insights--old and new--into the nexus of the drug light, melatonin, clocks, chronodisruption and public health. Med Hypotheses, 73(4), 537–541.
Abstract: Light is, clearly, a key to life on Earth and light, equally clearly, determines biological rhythmicity in organisms. Light does the latter by setting internal or endogenous clocks which allow a multitude of species, including man, to adjust their lives to changing external or environmental conditions. Critical changes over time occur from day to night and throughout the year. In this paper, we sum up how visible light provides electromagnetic information about environmental “time” via the ocular interface of newly discovered photoreceptive cells to a master clock in our brain, viz the suprachiasmatic nuclei [SCN], and how the SCN translate this input, with melatonin as a key biologic intermediary, into endogenous or biological time. We summarize experimental and epidemiological evidence suggesting how chronodisruption, a relevant disturbance of the temporal organization or order of physiology, endocrinology, metabolism and behaviour, is probably detrimental for human beings. On the basis of our synthesis, and in line with suggestions by other researchers voiced decades ago, light must, functionally, be considered as a drug equivalent. In this vein, the very timing, quality (wavelength), quantity (dose) and side effects, including chronodisruption, of light exposures can be critically important for health and disease in man. As a promising means to foster public health, we advocate an appropriate balance of exposures to the key Zeitgeber light in terms of “light hygiene”, implying strong and appropriate rather than weak and confusing temporal information. This focus on “light hygiene”, and thus on the key Zeitgeber light, does not mean to ignore that there are multiple entrainment pathways for our circadian clocks. Indeed, when dealing with light, chronodisruption and a multitude of adverse health effects, we ultimately need to consider Zeitgeber cues, and their possible interplay, beyond light alone. Confusions of the temporal programmes in humans can also stem from physical and social activities, stress and facets of food intake. And yet, since light possesses a rather unique and exclusive Zeitgeber role and in view of its ubiquitous nature, a specific, preventative focus on “light hygiene”, as a contribution to a general “Zeitgeber hygiene”, is warranted.
|
Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M., & Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. J Environ Manage, 92(10), 2714–2722.
Abstract: Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
|
Fasciani, I., Petragnano, F., Aloisi, G., Marampon, F., Rossi, M., Francesca Coppolino, M., et al. (2020). A new threat to dopamine neurons: the downside of artificial light. Neuroscience, in press, in press.
Abstract: Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.
|