Home | << 1 >> |
![]() |
Chalkias, C., Petrakis, M., Psiloglou, B., & Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and GIS. J Environ Manage, 79(1), 57–63.
Abstract: This paper describes a methodology for modelling light pollution using geographical information systems (GIS) and remote sensing (RS) technology. The proposed approach attempts to address the issue of environmental assessment in sensitive suburban areas. The modern way of life in developing countries is conductive to environmental degradation in urban and suburban areas. One specific parameter for this degradation is light pollution due to intense artificial night lighting. This paper aims to assess this parameter for the Athens metropolitan area, using modern analytical and data capturing technologies. For this purpose, night-time satellite images and analogue maps have been used in order to create the spatial database of the GIS for the study area. Using GIS advanced analytical functionality, visibility analysis was implemented. The outputs for this analysis are a series of maps reflecting direct and indirect light pollution around the city of Athens. Direct light pollution corresponds to optical contact with artificial night light sources, while indirect light pollution corresponds to optical contact with the sky glow above the city. Additionally, the assessment of light pollution in different periods allows for dynamic evaluation of the phenomenon. The case study demonstrates high levels of light pollution in Athens suburban areas and its increase over the last decade.
|
Kocifaj, M., & Solano Lamphar, H. A. (2013). Skyglow effects in UV and visible spectra: radiative fluxes. J Environ Manage, 127, 300–307.
Abstract: Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.
|
Solano Lamphar, H. A., & Kocifaj, M. (2013). Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLoS One, 8(2), e56563.
Abstract: In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
|