|
Bará, S. (2019). Black-body luminance and magnitudes per square arcsecond in the Johnson-Cousins BVR photometric bands. Photon. Lett. Pl., 11(3), 63.
Abstract: A relevant amount of light pollution studies deal with the unwanted visual effects of artificial light at night, including the anthropogenic luminance of the sky that hinders the observation of the celestial bodies which are a main target of ground-based astrophysical research, and a key asset of the intangible heritage of humankind. Most quantitative measurements and numerical models, however, evaluate the anthropogenic sky radiance in any of the standard Johnson-Cousins UBVRI photometric bands, generally in the V one. Since the Johnson-Cousins V band is not identical with the visual CIE V-lambda used to assess luminance, the conversion between these two photometric systems turns out to be spectrum-dependent. Given its interest for practical applications, in this Letter we provide the framework to perform this conversion and the transformation constants for black-body spectra of different absolute temperatures.
|
|
|
Barentine, J. C. (2016). Going for the Gold : Quantifying and Ranking Visual Night Sky Quality in International Dark Sky Places. IJSL, 18, 9–15.
Abstract: Since the invention of electric lighting in the nineteenth century, the steadily increasing use of artificial light at night in outdoor spaces has grown to threaten the integrity of dark night skies and nocturnal terrestrial spaces. The conservation community has gradually come to accept the need to protect natural nighttime darkness, which finds expression in dark sky parks and similar protected areas. As these places begin to reap tangible economic benefits in the form of sustainable âastrotourism,â the movement to actively protect them gains strength. The International Dark-Sky Association designates Dark Sky Parks and Reserves under a comparative ranking scheme that assigns night sky quality tiers according to a combination of objective and subjective characteristics, but shortcomings in the consistency of these ratings exist that undermine the consistency and reputation of the designation program. Here we consider potential changes to the qualification regime to make the ratings system more robust for the benefit of future designations.
|
|
|
C-Sanchez, E., Sanchez-Medina, A. J., Alonso-Hernandez, J. B., & Voltes-Dorta, A. (2019). Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach. Sensors (Basel), 19(13), 2840.
Abstract: Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting.
|
|
|
Cinzano, P. (2005). Night Sky Photometry with Sky Quality Meter. Technical Report 9, ISTIL. V1.4., .
Abstract: Sky Quality Meter, a low cost and pocket size night sky brightness photometer, opens to the general public the possibility to quantify the quality of the night sky. Expecting a large diffusion of measurements taken with this instrument, I tested and characterized it. I analyzed with synthetic photometry and laboratory measurements the relationship between the SQM photometrical system and the main systems used in light pollution studies. I evaluated the conversion factors to Johnsonâs B and V bands, CIE photopic and CIE scotopic responses for typical spectra and the spectral mismatch correction factors when specific filters are added.
|
|
|
Cinzano, P., & Falchi, F. (2014). Quantifying light pollution. Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 13–20.
Abstract: In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.
|
|