|
Adrian, J., Hue, D., Porte, S., & Le Brun, J. (2020). Validation of the driver ecological glare test. Journal of Safety Research, , in press.
Abstract: The present study proposes to validate the Driver Ecological Glare Test (DEGT), a test developed to measure the benefit of a headlight glare Advanced Driver Assistance System (ADAS), by comparing it to a laboratory glare test. Method: Twenty-four participants, aged from 55 to 70 years, were recruited to complete a visual examination, including monocular halo size measurement for both eyes using Vision Monitor device (MonCv3; Metrovision). An on-field evaluation took place at night at the UTAC CERAM test track to obtain disability glare measures using the DEGT. Results: A significant correlation was found between the two glare tests and Bland-Altman analysis reveals a good agreement with a bias of 73.7 arcmin between the halo size measurements obtained from the DEGT and Vision Monitor. The results of the present study demonstrate that the DEGT is a valid method to test halo size and is adapted to evaluate the benefits of an antiglare device for drivers in an ecological situation.
|
|
|
Allik, T., Ramboyong, L., Roberts, M., Walters, M., Soyka, T., Dixon, R., et al. (2016). Enhanced oil spill detection sensors in low-light environments. In Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016). SPIE.
Abstract: Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.
|
|
|
Bijveld, M. M. C., van Genderen, M. M., Hoeben, F. P., Katzin, A. A., van Nispen, R. M. A., Riemslag, F. C. C., et al. (2013). Assessment of night vision problems in patients with congenital stationary night blindness. PLoS One, 8(5), e62927.
Abstract: Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.
|
|