|
Grunsven van, R. H. A., Creemers, R., Joosten, K., Donners Maurice, & Veenendaal, E. M. (2016). Behaviour of migrating toads under artificial lights differs from other phases of their life cycle. AMRE, .
|
|
|
Hauptfleisch, M., & Dalton, C. (2015). Arthropod phototaxis and its possible effect on bird strike risk at two Namibian airports. Appl. Ecol. & Environ. Res., 13(4), 957–965.
Abstract: Aircraft wildlife collisions are a global safety and financial problem for the aviation industry, with birds being the main concern. In Namibia, 97% of collisions at Namibiaâs two main airports are reported to be with insectivorous birds. Phototaxis was identified as a major attractant to insectivorous
birds, which feed on the arthropods attracted to airport apron and terminal lights. This study considered the effect of light as an attraction at the rurally situated Hosea Kutako International and urban Eros airports. It further investigated the attractiveness of light colour (or wavelength) on arthropod abundance, biomass and diversity. The study found that phototaxis was a significant factor at Hosea Kutako only, and that white light was the main attractant for arthropods, specifically for large moths (Order Lepidoptera),
while yellow and orange light attracted significantly less arthropods. The study indicates a high likelihood that the Hosea Kutako apron lights (white) are an important attractant for arthropods, and therefore indirectly insectivorous birds, which can be reduced by replacing them with orange or yellow filters.
|
|
|
Kim, K. - N., Huang, Q. - Y., & Lei, C. - L. (2019). Advances in insect phototaxis and application to pest management: A review. Pest Manag Sci, 75(12), 3135–3143.
Abstract: Many insects, especially nocturnal insects, exhibit positive phototaxis to artificial lights. Many light traps are currently used to monitor and manage insect pest populations, with light traps playing a crucial role in physical pest control. Efficient use of light traps to attract target insect pests becomes an important topic in application of integrated pest management (IPM). Phototactic responses of insects vary among species, light characteristics and the physiological status of the insects. In addition, light can cause several biological responses, including biochemical, physiological, molecular and fitness changes in insects. In this review, we discuss several hypotheses on insect phototaxis, affecting factors on insect phototaxis, insect sensitive wavelengths, biological responses of insects to light and countermeasures for conserving beneficial insects and increasing trapping effect. Additionally, we provide information on the different sensitivities to wavelengths causing positive phototactic behavior on more than 70 insect pest and beneficial insect species. The use of advanced light traps equipped with superior light sources, such as light emitting diodes (LEDs), will make physical pest control in IPM more efficient. This article is protected by copyright. All rights reserved.
|
|
|
Longcore, T., Aldern, H. L., Eggers, J. F., Flores, S., Franco, L., Hirshfield-Yamanishi, E., et al. (2015). Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos Trans R Soc Lond B Biol Sci, 370, 20140125.
Abstract: Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.
|
|
|
Shimoda, M., & Honda, K. -ichiro. (2013). Insect reactions to light and its applications to pest management. Appl Entomol Zool, 48(4), 413–421.
Abstract: Insects are able to see ultraviolet (UV) radiation. Nocturnal insects are often attracted to light sources that emit large amounts of UV radiation, and devices that exploit this behavior, such as light traps for forecasting pest outbreaks, and electric insect killers, have been developed. Some diurnal species are attracted to yellow; yellow pan traps are used for conducting surveys for pest outbreaks and yellow sticky plates are used for pest control. Lamps that give off yellow illumination have been used effectively to control the activity of nocturnal moths and thus reduce damage to fruit, vegetables, and flowers. Covering cultivation facilities with film that filters out near-UV radiation reduces the invasion of pests such as whiteflies and thrips into the facilities, thus reducing damage. Reflective material placed on cultivated land can control the approach of flying insects such as aphids. Future development and use of new light sources such as light-emitting diodes is anticipated for promoting integrated pest management.
|
|