|
Bijveld, M. M. C., van Genderen, M. M., Hoeben, F. P., Katzin, A. A., van Nispen, R. M. A., Riemslag, F. C. C., et al. (2013). Assessment of night vision problems in patients with congenital stationary night blindness. PLoS One, 8(5), e62927.
Abstract: Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.
|
|
|
Chellappa, S. L., Viola, A. U., Schmidt, C., Bachmann, V., Gabel, V., Maire, M., et al. (2012). Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. J Clin Endocrinol Metab, 97(3), E433–7.
Abstract: CONTEXT: Light exposure, particularly at the short-wavelength range, triggers several nonvisual responses in humans. However, the extent to which the melatonin-suppressing and alerting effect of light differs among individuals remains unknown. OBJECTIVE: Here we investigated whether blue-enriched polychromatic light impacts differentially on melatonin and subjective and objective alertness in healthy participants genotyped for the PERIOD3 (PER3) variable-number, tandem-repeat polymorphism. DESIGN, SETTING, AND PARTICIPANTS: Eighteen healthy young men homozygous for the PER3 polymorphism (PER3(5/5)and PER3(4/4)) underwent a balanced crossover design during the winter season, with light exposure to compact fluorescent lamps of 40 lux at 6500 K and at 2500 K during 2 h in the evening. RESULTS: In comparison to light at 2500 K, blue-enriched light at 6500 K induced a significant suppression of the evening rise in endogenous melatonin levels in PER3(5/5) individuals but not in PER3(4/4). Likewise, PER3(5/5) individuals exhibited a more pronounced alerting response to light at 6500 K than PER3(4/4) volunteers. Waking electroencephalographic activity in the theta range (5-7 Hz), a putative correlate of sleepiness, was drastically attenuated during light exposure at 6500 K in PER3(5/5) individuals as compared with PER3(4/4). CONCLUSIONS: We provide first evidence that humans homozygous for the PER3 5/5 allele are particularly sensitive to blue-enriched light, as indexed by the suppression of endogenous melatonin and waking theta activity. Light sensitivity in humans may be modulated by a clock gene polymorphism implicated in the sleep-wake regulation.
|
|
|
Fritschi, L., Erren, T. C., Glass, D. C., Girschik, J., Thomson, A. K., Saunders, C., et al. (2013). The association between different night shiftwork factors and breast cancer: a case-control study. Br J Cancer, 109(9), 2472–2480.
Abstract: BACKGROUND: Research on the possible association between shiftwork and breast cancer is complicated because there are many different shiftwork factors, which might be involved including: light at night, phase shift, sleep disruption and changes in lifestyle factors while on shiftwork (diet, physical activity, alcohol intake and low sun exposure). METHODS: We conducted a population-based case-control study in Western Australia from 2009 to 2011 with 1205 incident breast cancer cases and 1789 frequency age-matched controls. A self-administered questionnaire was used to collect demographic, reproductive, and lifestyle factors and lifetime occupational history and a telephone interview was used to obtain further details about the shiftwork factors listed above. RESULTS: A small increase in risk was suggested for those ever doing the graveyard shift (work between midnight and 0500 hours) and breast cancer (odds ratio (OR)=1.16, 95% confidence interval (CI)=0.97-1.39). For phase shift, we found a 22% increase in breast cancer risk (OR=1.22, 95% CI=1.01-1.47) with a statistically significant dose-response relationship (P=0.04). For the other shiftwork factors, risks were marginally elevated and not statistically significant. CONCLUSION: We found some evidence that some of the factors involved in shiftwork may be associated with breast cancer but the ORs were low and there were inconsistencies in duration and dose-response relationships.
|
|
|
Kamrowski, R. L., Sutton, S. G., Tobin, R. C., & Hamann, M. (2014). Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation. Environ Manage, 54(3), 583–595.
Abstract: Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to “increased protection of local turtles” (P < 0.01) and/or “benefits to the local economy” (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.
|
|
|
Landers, J. A., Tamblyn, D., & Perriam, D. (2009). Effect of a blue-light-blocking intraocular lens on the quality of sleep. J Cataract Refract Surg, 35(1), 83–88.
Abstract: PURPOSE: To evaluate whether implantation of a blue-light-blocking intraocular lens (IOL) affects sleep quality. SETTING: Repatriation General Hospital, Adelaide, Australia. METHODS: This study comprised patients who had bilateral cataract surgery during the preceding 12 months with implantation of a conventional SI40NB IOL or an AcrySof Natural SN60WF blue-light-blocking IOL. Patients were contacted by telephone at least 6 months after second-eye surgery, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire was administered. Results were compared between groups. RESULTS: Of the 49 patients, 31 received conventional IOLs and 18, blue-light-blocking IOLs. The mean age of the patients was 80 years +/- 8.1 (SD). The median PSQI score was 6 (interquartile range 3 to 8). There were no statistically significant differences in PSQI scores between the 2 IOL groups (P = .65). This remained true after adjustment for sex, age, medication, and time since surgery. CONCLUSION: The blue-light-blocking IOL had no effect on the sleep quality of patients, indicating that these IOLs might serve as an alternative to conventional IOLs without a detrimental effect on circadian rhythm.
|
|