Home | << 1 >> |
![]() |
Kanikowska, D., Sugenoya, J., Sato, M., Shimizu, Y., Inukai, Y., Nishimura, N., et al. (2009). Seasonal variation in blood concentrations of interleukin-6, adrenocorticotrophic hormone, metabolites of catecholamine and cortisol in healthy volunteers. Int J Biometeorol, 53(6), 479–485.
Abstract: We investigated seasonal changes in blood concentrations of interleukin-6 (IL-6), adrenocorticotrophic hormone (ACTH), metabolites of catecholamine (VMA, HVA, and 5-HIAA) and cortisol in humans. Eight volunteers were investigated at four times during the year (February, May, August and October) at latitude 35 degrees N. The mean ambient temperature at the collection periods was higher in the order of summer > autumn approximately spring > winter. Changes in mood were also monitored by a profile of mood states (POMS) questionnaire. The concentration of IL-6 was significantly higher in winter and summer than in spring and autumn. The concentrations of ACTH, HVA and VMA were significantly higher in summer. No seasonal variation was detected in cortisol. There were significant differences among the seasons in subscale tension and anger in the POMS questionnaire; the tension subscale showed significant differences between spring and autumn, with a higher score in spring. The results demonstrate that Il-6, ACTH, HVA and VMA exhibit statistically significant seasonal rhythms, which might have important diagnostic and therapeutic implications.
|
Kujanik, S., & Mikulecky, M. (2010). Circadian and ultradian extrasystole rhythms in healthy individuals at elevated versus lowland altitudes. Int J Biometeorol, 54(5), 531–538.
Abstract: We defined chronobiologic norms for supraventricular and ventricular single extrasystoles (SV and VE, respectively) in healthy older males in lowland areas. The study was extended to higher altitudes, where hypobaric hypoxia was expected to increase extrasystole frequency, while perhaps not changing rhythmicity. In healthy men (lowland n = 37, altitude n = 22), aged 49-72 years, mean numbers of SVs and VEs were counted over a 24-h period. Cosinor regression was used to test the 24-h rhythm and its 2nd-10th harmonics. The resulting approximating function for either extrasystole type includes its point, 95% confidence interval of the mean, and 95% tolerance for single measurement estimates. Separate hourly differences (delta) between altitude and lowland (n = 59) were also analysed. Hourly means were significantly higher in the mountains versus lowland, by +0.8 beats/h on average for SVs, and by +0.9 beats/h for VEs. A relatively rich chronogram for VEs in mountains versus lowland exists. Delta VEs clearly display a 24-h component and its 2nd, 3rd, 4th and 7th harmonics. This results in significantly higher accumulation of VEs around 8.00 a.m., 11.00 a.m. and 3.00 p.m. in the mountains. The increase in extrasystole occurrence in the mountains is probably caused by higher hypobaric hypoxia and resulting sympathetic drive. Healthy men at elevated altitudes show circadian and several ultradian rhythms of single VEs dependent on the hypoxia level. This new methodological approach--evaluating the differences between two locations using delta values--promises to provide deeper insight into the occurrence of premature beats.
|
Thorn, L., Hucklebridge, F., Esgate, A., Evans, P., & Clow, A. (2004). The effect of dawn simulation on the cortisol response to awakening in healthy participants. Psychoneuroendocrinology, 29(7), 925–930.
Abstract: Bright light exposure after awakening has been shown to elevate cortisol levels in healthy participants. The present study examined the effect of dawn simulation (a treatment for seasonal affective disorder) on the cortisol response to awakening and mood. Twelve healthy participants were supplied with a dawn simulator (The Natural Alarm Clock, Outside In, Cambridge Ltd), a bedside light that increases in intensity prior to awakening to approximately 250 lux over 30 mins when an audible alarm sounds. A counterbalanced study was performed on 4 consecutive normal weekdays, two of which were control days (no dawn simulation) and two experimental (dawn simulation). Saliva samples were taken immediately on awakening then at 15, 30 and 45 minutes post awakening on all 4 study-days. Total cortisol production during the first 45 mins after awakening was found to be significantly higher in the experimental condition than in the control condition. Participants also reported greater arousal in the experimental condition and there was a trend for an association between increased arousal and increased cortisol secretory activity under dawn simulation. This study provides supportive evidence for the role of light and the suprachiasmatic nucleus in the awakening cortisol response.
Keywords: Human Health; Adult; Affect/*physiology/radiation effects; Arousal/*physiology/radiation effects; Circadian Rhythm/*physiology; Female; Humans; Hydrocortisone/analysis/*physiology/radiation effects; *Light; Male; Middle Aged; Reference Values; Saliva/chemistry; Wakefulness/*physiology/radiation effects
|