Home | << 1 2 >> |
![]() |
Bennie, J., Davies, T. W., Cruse, D., & Gaston, K. J. (2016). Ecological effects of artificial light at night on wild plants. J Ecol, 104(3), 611–620.
Abstract: 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.
2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation. 3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems. 4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem. |
Bennie, J., Davies, T. W., Inger, R., Gaston, K. J., & Chisholm, R. (2014). Mapping artificial lightscapes for ecological studies. Methods Ecol Evol, 5(6), 534–540.
Abstract: Artificial illumination of the night is increasing globally. There is growing evidence of a range of ecological impacts of artificial light and awareness of light pollution as a significant environmental issue. In urban and suburban areas, complex spatial patterns of light sources, structures and vegetation create a highly heterogeneous night-time light environment for plants and animals.
We developed a method for modelling the night-time light environment at a high spatial resolution in a small urban area for ecological studies. We used the position and height of street lights, and digital terrain and surface models, to predict the direct light intensity at different wavelengths at different heights above the ground surface. Validation against field measurements of night-time light showed that modelled light intensities in the visible and ultraviolet portions of the spectrum were accurate. We show how this model can be used to map biologically relevant lightscapes across an urban landscape. We also illustrate the utility of the model using night-time light maps as resistance surfaces in the software package circuitscape to predict potential movement of model nocturnal species between habitat patches and to identify key corridors and barriers to movement and dispersal. Understanding the ecological effects of artificial light requires knowledge of the light environment experienced by organisms throughout the diurnal and annual cycles, during periods of activity and rest and during different life stages. Our approach to high-resolution mapping of artificial lightscapes can be adapted to the sensitivity to light of different species and to other urban, suburban, rural and industrial landscapes. Keywords: light pollution; urban ecology; landscape ecology; diurnal; nocturnal; night; light
|
Frank, K. D. (1988). Imapct of outdoor lighting on moths: an assessment. J Lepid Soc, 42(2), 63–93. |
Henn, M., Nichols, H., Zhang, Y., & Bonner, T. H. (2014). Effect of artificial light on the drift of aquatic insects in urban central Texas streams. Journal of Freshwater Ecology, 29(3), 307–318.
Abstract: Light pollution can reduce night time drift of larval aquatic insects in urban streams by disrupting their circadian rhythms. Previous studies on larval insect drift show that disruption in drift leads to changes in reproduction as well as intraspecific and interspecific interactions. The purpose of this study was to conduct a preliminary investigation into the effects of extreme artificial light on insect drift in urbanized, high clarity spring systems of the karst Edwards Plateau, TX. We quantified taxa richness, diversity, and abundance in aquatic insect night time drift under two treatments (ambient night time light and artificial light addition) and among five streams using a paired design. Richness and diversity of drifting aquatic insects were similar between treatments but abundance was 37% less in the light addition treatment than that of the control. Effects of light addition on mean abundance was more notable in large streams with a 58% decrease in Simuliidae (compared to that of the control) and 51% decrease in Baetidae. Reduced drift from light addition suggests the potential of artificial lighting disrupting insect drift and consequently community structure. Results of this experiment support a growing body of knowledge on how urbanized systems influence stream communities.
|
Kleinteich, A., & Schneider, J. M. (2011). Developmental strategies in an invasive spider: constraints and plasticity. Ecological Entomology, 36(1), 82–93. |