|
Atkinson, G., & Davenne, D. (2007). Relationships between sleep, physical activity and human health. Physiol Behav, 90(2-3), 229–235.
Abstract: Although sleep and exercise may seem to be mediated by completely different physiological mechanisms, there is growing evidence for clinically important relationships between these two behaviors. It is known that passive body heating facilitates the nocturnal sleep of healthy elderly people with insomnia. This finding supports the hypothesis that changes in body temperature trigger somnogenic brain areas to initiate sleep. Nevertheless, little is known about how the core and distal thermoregulatory responses to exercise fit into this hypothesis. Such knowledge could also help in reducing sleep problems associated with nocturnal shiftwork. It is difficult to incorporate physical activity into a shiftworker's lifestyle, since it is already disrupted in terms of family commitments and eating habits. A multi-research strategy is needed to identify what the optimal amounts and timing of physical activity are for reducing shiftwork-related sleep problems. The relationships between sleep, exercise and diet are also important, given the recently reported associations between short sleep length and obesity. The cardiovascular safety of exercise timing should also be considered, since recent data suggest that the reactivity of blood pressure to a change in general physical activity is highest during the morning. This time is associated with an increased risk in general of a sudden cardiac event, but more research work is needed to separate the influences of light, posture and exercise per se on the haemodynamic responses to sleep and physical activity following sleep taken at night and during the day as a nap.
|
|
|
Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., et al. (2005). High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab, 90(3), 1311–1316.
Abstract: Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.
|
|
|
Lack, L. C., Gradisar, M., Van Someren, E. J. W., Wright, H. R., & Lushington, K. (2008). The relationship between insomnia and body temperatures. Sleep Med Rev, 12(4), 307–317.
Abstract: Sleepiness and sleep propensity are strongly influenced by our circadian clock as indicated by many circadian rhythms, most commonly by that of core body temperature. Sleep is most conducive in the temperature minimum phase, but is inhibited in a “wake maintenance zone” before the minimum phase, and is disrupted in a zone following that phase. Different types of insomnia symptoms have been associated with abnormalities of the body temperature rhythm. Sleep onset insomnia is associated with a delayed temperature rhythm presumably, at least partly, because sleep is attempted during a delayed evening wake maintenance zone. Morning bright light has been used to phase advance circadian rhythms and successfully treat sleep onset insomnia. Conversely, early morning awakening insomnia has been associated with a phase advanced temperature rhythm and has been successfully treated with the phase delaying effects of evening bright light. Sleep maintenance insomnia has been associated not with a circadian rhythm timing abnormality, but with nocturnally elevated core body temperature. Combination of sleep onset and maintenance insomnia has been associated with a 24-h elevation of core body temperature supporting the chronic hyper-arousal model of insomnia. The possibility that these last two types of insomnia may be related to impaired thermoregulation, particularly a reduced ability to dissipate body heat from distal skin areas, has not been consistently supported in laboratory studies. Further studies of thermoregulation are needed in the typical home environment in which the insomnia is most evident.
|
|
|
LeGates, T. A., Altimus, C. M., Wang, H., Lee, H. - K., Yang, S., Zhao, H., et al. (2012). Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 491(7425), 594–598.
Abstract: The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
|
|
|
Wright, K. P. J., Hull, J. T., & Czeisler, C. A. (2002). Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol, 283(6), R1370–7.
Abstract: Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.
|
|